In addition to their roles in protecting nerves and increasing conduction velocity, peripheral glia plays key functions in blood vessel development by secreting molecules governing arteries alignment and maturation with nerves. Here, we show in mice that a specific, nerve-attached cell population, derived from boundary caps (BCs), constitutes a major source of mural cells for the developing skin vasculature. Using Cre-based reporter cell tracing and single-cell transcriptomics, we show that BC derivatives migrate into the skin along the nerves, detach from them, and differentiate into pericytes and vascular smooth muscle cells.
View Article and Find Full Text PDFPatients carrying an inactive allele develop tumors of Schwann cell origin called neurofibromas (NF). Genetically engineered mouse models have significantly enriched our understanding of plexiform forms of NFs (pNF). However, this has not been the case for cutaneous neurofibromas (cNF), observed in all NF1 patients, as no previous model recapitulates their development.
View Article and Find Full Text PDFAdult neurogenesis in the mammalian brain is restricted to specific regions, such as the dentate gyrus (DG) in the hippocampus and the subventricular zone (SVZ) in the walls of the lateral ventricles. Here, we used a mouse line carrying a knock-in of Cre recombinase in the Prss56 gene, in combination with two Cre-inducible fluorescent reporters (Rosa26 and Rosa26 ), to perform genetic tracing of Prss56-expressing cells in the adult brain. We found reporter-positive cells in three neurogenic niches: the DG, the SVZ and the hypothalamus ventricular zone.
View Article and Find Full Text PDFWhile neurogenic stem cells have been identified in rodent and human skin, their manipulation and further characterization are hampered by a lack of specific markers. Here, we perform genetic tracing of the progeny of boundary cap (BC) cells, a neural-crest-derived cell population localized at peripheral nerve entry/exit points. We show that BC derivatives migrate along peripheral nerves to reach the skin, where they give rise to terminal glia associated with dermal nerve endings.
View Article and Find Full Text PDFThe physiological effects of many extracellular neurotransmitters, hormones, growth factors, and other stimuli are mediated by receptor-promoted activation of phospholipase C (PLC) and consequential activation of inositol lipid signaling pathways. These signaling responses include the classically described conversion of phosphatidylinositol(4,5)P(2) to the Ca(2+)-mobilizing second messenger inositol(1,4,5)P(3) and the protein kinase C-activating second messenger diacylglycerol as well as alterations in membrane association or activity of many proteins that harbor phosphoinositide binding domains. The 13 mammalian PLCs elaborate a minimal catalytic core typified by PLC-d to confer multiple modes of regulation of lipase activity.
View Article and Find Full Text PDFThe lipase activity of most phospholipases C (PLCs) is basally repressed by a highly degenerate and mostly disordered X/Y linker inserted within the catalytic domain. Release of this auto-inhibition is driven by electrostatic repulsion between the plasma membrane and the electronegative X/Y linker. In contrast, PLC-γ isozymes (PLC-γ1 and -γ2) are structurally distinct from other PLCs because multiple domains are present in their X/Y linker.
View Article and Find Full Text PDFDuring brain development, proper neuronal migration and morphogenesis is critical for the establishment of functional neural circuits. Here we report that srGAP2 negatively regulates neuronal migration and induces neurite outgrowth and branching through the ability of its F-BAR domain to induce filopodia-like membrane protrusions resembling those induced by I-BAR domains in vivo and in vitro. Previous work has suggested that in nonneuronal cells filopodia dynamics decrease the rate of cell migration and the persistence of leading edge protrusions.
View Article and Find Full Text PDF