Minimal residual disease (MRD) is known to be an independent prognostic factor in patients with acute lymphoblastic leukemia (ALL). High-throughput sequencing (HTS) is currently used in routine practice for the diagnosis and follow-up of patients with hematological neoplasms. In this retrospective study, we examined the role of immunoglobulin/T-cell receptor-based MRD in patients with ALL by HTS analysis of immunoglobulin H and/or T-cell receptor gamma chain loci in bone marrow samples from 11 patients with ALL, at diagnosis and during follow-up.
View Article and Find Full Text PDFHigh-throughput sequencing (HTS) is considered a technical revolution that has improved our knowledge of lymphoid and autoimmune diseases, changing our approach to leukaemia both at diagnosis and during follow-up. As part of an immunoglobulin/T cell receptor-based minimal residual disease (MRD) assessment of acute lymphoblastic leukaemia patients, we assessed the performance and feasibility of the replacement of the first steps of the approach based on DNA isolation and Sanger sequencing, using a HTS protocol combined with bioinformatics analysis and visualization using the Vidjil software. We prospectively analysed the diagnostic and relapse samples of 34 paediatric patients, thus identifying 125 leukaemic clones with recombinations on multiple loci (TRG, TRD, IGH and IGK), including Dd2/Dd3 and Intron/KDE rearrangements.
View Article and Find Full Text PDFMuscle-invasive bladder carcinoma (MIBC) constitutes a heterogeneous group of tumors with a poor outcome. Molecular stratification of MIBC may identify clinically relevant tumor subgroups and help to provide effective targeted therapies. From seven series of large-scale transcriptomic data (383 tumors), we identified an MIBC subgroup accounting for 23.
View Article and Find Full Text PDFBackground: V(D)J recombinations in lymphocytes are essential for immunological diversity. They are also useful markers of pathologies. In leukemia, they are used to quantify the minimal residual disease during patient follow-up.
View Article and Find Full Text PDFAlthough acute myeloid leukemia (AML) with t(8;21) belongs to the favorable risk AML subset, relapse incidence may reach 30% in those patients. RUNX1-RUNX1T1 fusion transcript is a well-established marker for minimal residual disease (MRD) monitoring. In this study, we investigated the feasibility and performances of RUNX1-RUNX1T1 DNA as MRD marker in AML with t(8;21).
View Article and Find Full Text PDFPurpose: Clinically useful molecular markers predicting the clinical course of patients diagnosed with non-muscle-invasive bladder cancer are needed to improve treatment outcome. Here, we validated four previously reported gene expression signatures for molecular diagnosis of disease stage and carcinoma in situ (CIS) and for predicting disease recurrence and progression.
Experimental Design: We analyzed tumors from 404 patients diagnosed with bladder cancer in hospitals in Denmark, Sweden, England, Spain, and France using custom microarrays.
Germinal activating mutations of FGFR3 are responsible for several forms of dwarfism due to the inhibitory effect of FGFR3 on bone growth. Surprisingly, identical somatic activating mutations have been found at the somatic level in tumours: at high frequency in benign epithelial tumours (seborrheic keratosis, urothelial papilloma) and in low-grade, low-stage urothelial carcinomas, and at a lower frequency in other types of urothelial carcinoma, in cervix carcinoma, and in haematological cancer, multiple myeloma. FGFR3 exists as two isoforms, FGFR3b and FGFR3c, differs in ligand specificity and tissue expression.
View Article and Find Full Text PDFThe b isoform of fibroblast growth factor receptor 2, FGFR2b/FGFR2-IIIb/Ksam-IIC1/KGFR, a tyrosine kinase receptor, is expressed in a wide variety of epithelia and is downregulated in several human carcinomas including prostate, salivary and urothelial cell carcinomas. FGFR2b has been shown to inhibit growth in tumour cell lines derived from these carcinomas. Here, we investigated the molecular mechanisms underlying the inhibition of human urothelial carcinoma cell growth following FGFR2b expression.
View Article and Find Full Text PDF