Publications by authors named "Aurelie Bugeau"

Machine learning and deep learning models have become essential in the recent fast development of artificial intelligence in many sectors of the society. It is now widely acknowledge that the development of these models has an environmental cost that has been analyzed in many studies. Several online and software tools have been developed to track energy consumption while training machine learning models.

View Article and Find Full Text PDF

Fully supervised deep neural networks for segmentation usually require a massive amount of pixel-level labels which are manually expensive to create. In this work, we develop a multi-task learning method to relax this constraint. We regard the segmentation problem as a sequence of approximation subproblems that are recursively defined and in increasing levels of approximation accuracy.

View Article and Find Full Text PDF

We propose a new variational model for non-linear image fusion. Our approach is based on the use of an osmosis energy term related to the one studied in Vogel et al. [44] and Weickert et al.

View Article and Find Full Text PDF

Superpixels have become very popular in many computer vision applications. Nevertheless, they remain under-exploited, since the superpixel decomposition may produce irregular and nonstable segmentation results due to the dependency to the image content. In this paper, we first introduce a novel structure, a superpixel-based patch, called SuperPatch.

View Article and Find Full Text PDF

In this paper, we address the problem of recovering a color image from a grayscale one. The input color data comes from a source image considered as a reference image. Reconstructing the missing color of a grayscale pixel is here viewed as the problem of automatically selecting the best color among a set of color candidates while simultaneously ensuring the local spatial coherency of the reconstructed color information.

View Article and Find Full Text PDF

Histogram equalization is a well-known method for image contrast enhancement. Nevertheless, as histograms do not include any information on the spatial repartition of colors, their application to local image editing problems remains limited. To cope with this lack of spatial information, spatiograms have been recently proposed for tracking purposes.

View Article and Find Full Text PDF
Tracking with occlusions via graph cuts.

IEEE Trans Pattern Anal Mach Intell

January 2011

This work presents a new method for tracking and segmenting along time-interacting objects within an image sequence. One major contribution of the paper is the formalization of the notion of visible and occluded parts. For each object, we aim at tracking these two parts.

View Article and Find Full Text PDF

Inpainting is the art of modifying an image in a form that is not detectable by an ordinary observer. There are numerous and very different approaches to tackle the inpainting problem, though as explained in this paper, the most successful algorithms are based upon one or two of the following three basic techniques: copy-and-paste texture synthesis, geometric partial differential equations (PDEs), and coherence among neighboring pixels. We combine these three building blocks in a variational model, and provide a working algorithm for image inpainting trying to approximate the minimum of the proposed energy functional.

View Article and Find Full Text PDF