Enterococcus faecalis is a Gram-positive clinical pathogen causing severe infections. Its survival during infection depends on its ability to utilize host-derived metabolites, such as protein-deglycosylation products. We have identified in E.
View Article and Find Full Text PDFIn this work, the physiological roles of the primary peroxide scavenging activities of Enterococcus faecium AUS0004 strain were analysed. This healthcare-associated pathogen harbours genes encoding putative NADH peroxidase (Npr), alkyl hydroperoxide reductase (AhpCF), glutathione peroxidase (Gpx) and manganese-dependent catalase (Mn-Kat). Gene expression analyses showed that npr and kat genes are especially and significantly induced in cells treated with hydrogen peroxide (HO) and cumene hydroperoxide (CuOOH), which suggested an important function of these enzymes to protect E.
View Article and Find Full Text PDFThe manganese superoxide dismutase (SodA) of E. faecium strain AUS0004 has been characterised. It is most closely related to Enterococcus hirae, Enterococcus durans, Enterococcus villorium, and Enterococcus mundtii with 100%, 91,55%, 90,85%, and 90,58% homology, respectively, but more distant from SodA of E.
View Article and Find Full Text PDFBackground: MRSA are high-priority multidrug-resistant pathogens. Although there are still some antibiotics active against MRSA, continuous efforts to discover new antibiotics and treatment strategies are needed because resistance to these new drugs has already been reported.
Objectives: Here we explore if d-alanylation of teichoic acids (TAs) mediated by the dlt operon gene products might be a druggable target to overcome β-lactam-resistance of MRSA.
Glycerol (Gly) can be dissimilated by two pathways in bacteria. Either this sugar alcohol is first oxidized to dihydroxyacetone (DHA) and then phosphorylated or it is first phosphorylated to glycerol-3-phosphate (GlyP) followed by oxidation. Oxidation of GlyP can be achieved by NAD-dependent dehydrogenases or by a GlyP oxidase.
View Article and Find Full Text PDFWhereas the primary actions of β-lactams are well characterized, their downstream effects are less well understood. Although their targets are extracellular, β-lactams stimulate respiration in Escherichia coli leading to increased intracellular accumulation of reactive oxygen species (ROS). Here, we show that β-lactams over a large concentration range trigger a strong increase in ROS production in Enterococcus faecalis under aerobic, but not anaerobic, conditions.
View Article and Find Full Text PDFBackground: Enterococci intrinsically resistant to cephalosporins represent a major cause of healthcare-associated infections, and the emergence of MDR makes therapeutic approaches particularly challenging.
Objectives: Teichoic acids are cell wall glycopolymers present in Gram-positive bacteria. Teichoic acids can be modified by d-alanylation, which requires four proteins encoded by the dltABCD operon.
Maltodextrin is a mixture of maltooligosaccharides, which are produced by the degradation of starch or glycogen. They are mostly composed of α-1,4- and some α-1,6-linked glucose residues. Genes presumed to code for the maltodextrin transporter were induced during enterococcal infection.
View Article and Find Full Text PDFBackground: Enterococcus faecium and faecalis are Gram-positive opportunistic pathogens that have become leading causes of nosocomial infections over the last decades. Especially multidrug resistant enterococci have become a challenging clinical problem worldwide. Therefore, new treatment options are needed and the identification of alternative targets for vaccine development has emerged as a feasible alternative to fight the infections caused by these pathogens.
View Article and Find Full Text PDFInfections by opportunistic bacteria have significant contributions to morbidity and mortality of hospitalized patients and also lead to high expenses in healthcare. In this setting, one of the major clinical problems is caused by Gram-positive bacteria such as enterococci and staphylococci. In this study we extract, purify, identify and characterize immunogenic surface-exposed proteins present in the vancomycin resistant enterococci (VRE) strain Enterococcus faecium E155 using three different extraction methods: trypsin shaving, biotinylation and elution at high pH.
View Article and Find Full Text PDFEnterococcus faecalis is a Gram-positive commensal bacterium inhabiting the gastrointestinal tracts of human and other mammals, but is also increasingly recognized as an opportunistic human pathogen. Oxidative stress is one of the major challenges encountered by enterococci, both in their natural environment and during infection. In this paper, we evaluated the transcriptomic response of E.
View Article and Find Full Text PDFThe (p)ppGpp synthetase RelA contributes to stress adaptation and virulence in Enterococcus faecalis V583. A 2-dimensional electrophoresis proteomic analysis of 2 relA mutants, i.e.
View Article and Find Full Text PDFCandidate small RNAs (sRNAs) have recently been identified in Enterococcus faecalis, a Gram-positive opportunistic pathogen, and six of these candidate sRNAs with unknown functions were selected for a functional study. Deletion mutants and complemented strains were constructed, and their virulence was tested. We were unable to obtain the ef0869-0870 mutant, likely due to an essential role, and the ef0820-0821 sRNA seemed not to be involved in virulence.
View Article and Find Full Text PDFSpread of antibiotic resistance among bacteria responsible for nosocomial and community-acquired infections urges for novel therapeutic or prophylactic targets and for innovative pathogen-specific antibacterial compounds. Major challenges are posed by opportunistic pathogens belonging to the low GC% gram-positive bacteria. Among those, Enterococcus faecalis is a leading cause of hospital-acquired infections associated with life-threatening issues and increased hospital costs.
View Article and Find Full Text PDFEnterococcus faecalis is an opportunistic pathogen responsible for nosocomial infections. Lipoproteins in Gram-positive bacteria are translocated across the plasma membrane and anchored by the fatty acid group. They perform critical roles, with some described as virulence determinants.
View Article and Find Full Text PDFGamma-caprolactone (GCL) is well-known as a food flavor and has been recently described as a biostimulant molecule promoting the growth of bacteria with biocontrol activity against soft-rot pathogens. Among these biocontrol agents, Rhodococcus erythropolis, characterized by a remarkable metabolic versatility, assimilates various γ-butyrolactone molecules with a branched-aliphatic chain, such as GCL. The assimilative pathway of GCL in R.
View Article and Find Full Text PDFSmall RNA molecules (sRNAs) are key mediators of virulence and stress inducible gene expressions in some pathogens. In this work we identify sRNAs in the gram positive opportunistic pathogen Enterococcus faecalis. We characterized 11 sRNAs by tiling microarray analysis, 5' and 3' RACE-PCR, and Northern blot analysis.
View Article and Find Full Text PDFEnterococcus faecalis is equipped with two pathways of glycerol dissimilation. Glycerol can either first be phosphorylated by glycerol kinase and then oxidized by glycerol-3-phosphate oxidase (the glpK pathway) or first be oxidized by glycerol dehydrogenase and then phosphorylated by dihydroxyacetone kinase (the dhaK pathway). Both pathways lead to the formation of dihydroxyacetone phosphate, an intermediate of glycolysis.
View Article and Find Full Text PDFSecreted and surface proteins of bacteria are key molecules that interface the cell with the environment. Some of them, corresponding to virulence factors, have already been described for Enterococcus faecalis, the predominant species involved in enterococcal nosocomial infections. In a global proteomic approach, the identification of the most abundant secreted and surface-associated proteins of E.
View Article and Find Full Text PDFGuanosine penta- and tetraphosphate [(p)ppGpp] are two unusual nucleotides implied in the bacterial stringent response. In many pathogenic bacteria, mutants unable to synthesize these molecules lose their virulence. In Gram-positive bacteria such as Enterococcus faecalis, the synthesis and degradation of (p)ppGpp mainly depend on the activity of a bifunctional enzyme, encoded by the relA gene.
View Article and Find Full Text PDFRhodococcus equi is one of the most important causes of mortality in foals between 1 and 6 months of age. Although rare, infection also occurs in a variety of other mammals including humans, often following immunosuppression of various causes. Secreted proteins are known to mediate important pathogen-host interactions and consequently are favored candidates for vaccine development as they are the most easily accessible microbial antigens to the immune system.
View Article and Find Full Text PDFErs has been qualified as the PrfA-like transcriptional regulator of Enterococcus faecalis. In a previous study we reported that Ers is important for the survival within macrophages of this opportunist pathogenic bacterium. In the present work we have used proteomic and microarray expression profiling of E.
View Article and Find Full Text PDFTo cope with medium acidity, Lactococcus lactis has evolved a number of inducible mechanisms commonly referred as acid stress response. To better understand the molecular basis of this response, several mutants constitutively tolerant to acidity were previously obtained by insertional random mutagenesis of L. lactis MG1363.
View Article and Find Full Text PDFIn a recent proteomic analysis, we showed the overproduction of the ArcA and ArcB proteins in Lactococcus lactis MG1363 at low pH. The corresponding genes belong to the arcABD1C1C2TD2 cluster that encodes components of the arginine deiminase pathway. In this study, we characterized this cluster at the genetic level.
View Article and Find Full Text PDF