Publications by authors named "Aurelie A V Albertini"

Enveloped viruses enter the cell by fusing their envelope with a cellular membrane. Fusion is catalyzed by conformational changes of viral glycoproteins from pre-fusion to post-fusion states. Structural studies have defined three classes of viral fusion glycoproteins.

View Article and Find Full Text PDF

Rhabdoviruses enter the cell via the endocytic pathway and subsequently fuse with a cellular membrane within the acidic environment of the endosome. Both receptor recognition and membrane fusion are mediated by a single transmembrane viral glycoprotein (G). Fusion is triggered via a low-pH induced structural rearrangement.

View Article and Find Full Text PDF

Rabies virus (RABV) is a negative-stranded RNA virus. Its genome is tightly encapsidated by the viral nucleoprotein (N) and this RNA-N complex is the template for transcription and replication by the viral RNA-dependent RNA polymerase (L) and its cofactor, the phosphoprotein (P). We present molecular, structural, and cellular aspects of RABV transcription and replication.

View Article and Find Full Text PDF

The entry of enveloped viruses into cells requires the fusion of viral and cellular membranes, driven by conformational changes in viral glycoproteins. Many studies have shown that fusion involves the cooperative action of a large number of these glycoproteins, but the underlying mechanisms are unknown. We used electron microscopy and tomography to study the low pH-induced fusion reaction catalyzed by vesicular stomatitis virus glycoprotein (G).

View Article and Find Full Text PDF

In rabies virus, the attachment of the L polymerase (L) to the viral nucleocapsids (NCs)-a nucleoprotein (N)-RNA complex that serves as template for RNA transcription and replication-is mediated by the polymerase cofactor, the phosphoprotein (P). P forms dimers (P(2)) that bind through their C-terminal domains (P(CTD)) to the C-terminal region of the N. Recombinant circular N(m)-RNA complexes containing 9 to 12 protomers of N (hereafter, the subscript m denotes the number of N protomers) served here as model systems for studying the binding of P to NC-like N(m)-RNA complexes.

View Article and Find Full Text PDF
Article Synopsis
  • The phosphoprotein (P) is crucial for the replication of rabies virus (RV) and vesicular stomatitis virus (VSV), and its oligomerization, potentially modulated by phosphorylation, is vital for its functionality.
  • Recent studies using size exclusion chromatography and multiangle laser light scattering demonstrate that both unphosphorylated VSV and RV phosphoproteins primarily exist as dimers in solution, which are asymmetric and have specific hydrodynamic properties.
  • Further experiments show that a mutant form of VSV phosphoprotein, designed to mimic phosphorylation, also forms a dimer with similar characteristics, but prolonged incubation at elevated temperatures can lead to the formation of irregular filamentous structures for both wild type and mutant proteins
View Article and Find Full Text PDF

In order to study the packaging of rabies virus RNA inside the viral nucleocapsid, rabies nucleoprotein was expressed in insect cells. In the cells, it binds to cellular RNA to form long, helical or short circular complexes, depending on the length of the bound RNA. The circular complexes contained from 9 up to 13 N-protomers per ring.

View Article and Find Full Text PDF

Negative-strand RNA viruses condense their genome into a helical nucleoprotein-RNA complex, the nucleocapsid, which is packed into virions and serves as a template for the RNA-dependent RNA polymerase complex. The crystal structure of a recombinant rabies virus nucleoprotein-RNA complex, organized in an undecameric ring, has been determined at 3.5 angstrom resolution.

View Article and Find Full Text PDF