We report the whole-genome sequence of monkeypox virus obtained using MinION technology (Oxford Nanopore Technologies) from a French clinical specimen during the 2022 epidemic. Amplicon-based sequencing and shotgun metagenomic approaches were directly applied to the sample.
View Article and Find Full Text PDFWe report the whole-genome sequences of a monkeypox virus from the skin lesion of a French patient and the corresponding isolated viral strain. Both viral genomic sequences were successfully obtained by applying shotgun metagenomics using the Oxford Nanopore Technologies sequencing approach.
View Article and Find Full Text PDFMonkeypox is an emerging and neglected zoonotic disease whose number of reported cases has been gradually increasing in Central Africa since 1980. This disease is caused by the monkeypox virus (MPXV), which belongs to the genus Orthopoxvirus in the family Poxviridae. Obtaining molecular data is particularly useful for establishing the relationships between the viral strains involved in outbreaks in countries affected by this disease.
View Article and Find Full Text PDFBackground: In December 2019, the COVID-19 pandemic initially erupted from a cluster of pneumonia cases of unknown origin in the city of Wuhan, China. Presently, it has almost reached 94 million cases worldwide. Lebanon on the brink of economic collapse and its healthcare system thrown into turmoil, has previously managed to cope with the initial SARS-CoV-2 wave.
View Article and Find Full Text PDFObjective: A massive scale-up of testing and treatment is indicated to globally eliminate hepatitis B virus (HBV) infection. However, access to a polymerase chain reaction (PCR), a key test to quantify HBV DNA levels and determine treatment eligibility, is limited in resource-limited countries. We have developed and evaluated the loop-mediated isothermal amplification (LAMP) assay to diagnose clinically important HBV DNA thresholds defined by the WHO (≥20 000 and ≥ 200 000 IU/mL).
View Article and Find Full Text PDFMucosa-associated lymphoid tissue (MALT) lymphoma is generally associated with chronic antigen stimulation: auto-antigens or of microbial origin. Only one study suggested association between Achromobacter xylosoxidans and pulmonary MALT lymphoma. We aimed to investigate the presence of virus or any infectious agents in pulmonary MALT lymphoma by using metagenomic next-generation sequencing (mNGS).
View Article and Find Full Text PDFGlobal human health is increasingly challenged by emerging viral threats, especially those observed over the last 20 years with coronavirus-related human diseases, such as the Severe Acute Respiratory Syndrome (SARS) and the Middle East Respiratory Syndrome (MERS). Recently, in late December 2019, a novel , SARS-CoV-2, originating from the Chinese city of Wuhan, emerged and was then identified as the causative agent of a new severe form of pneumonia, COVID-19. Real-time genome sequencing in such viral outbreaks is a key issue to confirm identification and characterization of the involved pathogen and to help establish public health measures.
View Article and Find Full Text PDFAfter its first description in Wuhan (China), SARS-CoV-2 the agent of coronavirus disease 2019 (COVID-19) rapidly spread worldwide. Previous studies suggested that pets could be susceptible to SARS-CoV-2. Here, we investigated the putative infection by SARS-CoV-2 in 22 cats and 11 dogs from owners previously infected or suspected of being infected by SARS-CoV-2.
View Article and Find Full Text PDFThe diagnosis of infectious diseases is entering a new and interesting phase. Technologies based on paper microfluidics, coupled to developments in isothermal amplification of Nucleic Acids (NAs) raise opportunities for bringing the methods of molecular biology in the field, in a low setting environment. A lot of work has been performed in the domain over the last few years and the landscape of contributions is rich and diverse.
View Article and Find Full Text PDFThe most performing techniques enabling early diagnosis of infectious diseases rely on nucleic acid detection. Today, because of their high technicality and cost, nucleic acid amplification tests (NAAT) are of benefit only to a small fraction of developing countries population. By reducing costs, simplifying procedures and enabling multiplexing, paper microfluidics has the potential to considerably facilitate their accessibility.
View Article and Find Full Text PDF