Publications by authors named "Aurel A Lazar"

Associative memory in the Mushroom Body of the fruit fly brain depends on the encoding and processing of odorants in the first three stages of the Early Olfactory System: the Antenna, the Antennal Lobe and the Mushroom Body Calyx. The Kenyon Cells (KCs) of the Calyx provide the Mushroom Body compartments the identity of pure and odorant mixtures encoded as a train of spikes. Characterizing the code underlying the KC spike trains is a major challenge in neuroscience.

View Article and Find Full Text PDF

Divisive normalization is a model of canonical computation of brain circuits. We demonstrate that two cascaded divisive normalization processors (DNPs), carrying out intensity/contrast gain control and elementary motion detection, respectively, can model the robust motion detection realized by the early visual system of the fruit fly. We first introduce a model of elementary motion detection and rewrite its underlying phase-based motion detection algorithm as a feedforward divisive normalization processor.

View Article and Find Full Text PDF

Recent advances in molecular transduction of odorants in the Olfactory Sensory Neurons (OSNs) of the Drosophila Antenna have shown that the odorant object identity is multiplicatively coupled with the odorant concentration waveform. The resulting combinatorial neural code is a confounding representation of odorant semantic information (identity) and syntactic information (concentration). To distill the functional logic of odor information processing in the Antennal Lobe (AL) a number of challenges need to be addressed including 1) how is the odorant semantic information decoupled from the syntactic information at the level of the AL, 2) how are these two information streams processed by the diverse AL Local Neurons (LNs) and 3) what is the end-to-end functional logic of the AL? By analyzing single-channel physiology recordings at the output of the AL, we found that the Projection Neuron responses can be decomposed into a concentration-invariant component, and two transient components boosting the positive/negative concentration contrast that indicate onset/offset timing information of the odorant object.

View Article and Find Full Text PDF

The brain has only a fraction of the number of neurons of higher organisms such as mice and humans. Yet the sheer complexity of its neural circuits recently revealed by large connectomics datasets suggests that computationally modeling the function of fruit fly brain circuits at this scale poses significant challenges. To address these challenges, we present here a programmable ontology that expands the scope of the current brain anatomy ontologies to encompass the functional logic of the fly brain.

View Article and Find Full Text PDF

The circadian clock orchestrates daily changes in physiology and behavior to ensure internal temporal order and optimal timing across the day. In animals, a central brain clock coordinates circadian rhythms throughout the body and is characterized by a remarkable robustness that depends on synaptic connections between constituent neurons. The clock neuron network of , which shares network motifs with clock networks in the mammalian brain yet is built of many fewer neurons, offers a powerful model for understanding the network properties of circadian timekeeping.

View Article and Find Full Text PDF

In recent years, a wealth of neuroscience data have become available including cell type and connectome/synaptome datasets for both the larva and adult fly. To facilitate integration across data modalities and to accelerate the understanding of the functional logic of the fruit fly brain, we have developed FlyBrainLab, a unique open-source computing platform that integrates 3D exploration and visualization of diverse datasets with interactive exploration of the functional logic of modeled executable brain circuits. FlyBrainLab's User Interface, Utilities Libraries and Circuit Libraries bring together neuroanatomical, neurogenetic and electrophysiological datasets with computational models of different researchers for validation and comparison within the same platform.

View Article and Find Full Text PDF

Over the past two decades, substantial amount of work has been conducted to characterize different odorant receptors, neuroanatomy and odorant response properties of the early olfactory system of Drosophila melanogaster. Yet many odorant receptors remain only partially characterized, and the odorant transduction process and the axon hillock spiking mechanism of the olfactory sensory neurons (OSNs) have yet to be fully determined. Identity and concentration, two key characteristics of the space of odorants, are encoded by the odorant transduction process.

View Article and Find Full Text PDF

The fruit fly's natural visual environment is often characterized by light intensities ranging across several orders of magnitude and by rapidly varying contrast across space and time. Fruit fly photoreceptors robustly transduce and, in conjunction with amacrine cells, process visual scenes and provide the resulting signal to downstream targets. Here, we model the first step of visual processing in the photoreceptor-amacrine cell layer.

View Article and Find Full Text PDF

We investigate the sparse functional identification of complex cells and the decoding of spatio-temporal visual stimuli encoded by an ensemble of complex cells. The reconstruction algorithm is formulated as a rank minimization problem that significantly reduces the number of sampling measurements (spikes) required for decoding. We also establish the duality between sparse decoding and functional identification and provide algorithms for identification of low-rank dendritic stimulus processors.

View Article and Find Full Text PDF

The central complex (CX) is a set of neuropils in the center of the fly brain that have been implicated as playing an important role in vision-mediated behavior and integration of spatial information with locomotor control. In contrast to currently available data regarding the neural circuitry of neuropils in the fly's vision and olfactory systems, comparable data for the CX neuropils is relatively incomplete; many categories of neurons remain only partly characterized, and the synaptic connectivity between CX neurons has yet to be fully determined. Successful modeling of the information processing functions of the CX neuropils therefore requires a means of easily constructing and testing a range of hypotheses regarding both the high-level structure of their neural circuitry and the properties of their constituent neurons and synapses.

View Article and Find Full Text PDF

Previous research demonstrated that global phase alone can be used to faithfully represent visual scenes. Here we provide a reconstruction algorithm by using only local phase information. We also demonstrate that local phase alone can be effectively used to detect local motion.

View Article and Find Full Text PDF

We have developed an open software platform called Neurokernel for collaborative development of comprehensive models of the brain of the fruit fly Drosophila melanogaster and their execution and testing on multiple Graphics Processing Units (GPUs). Neurokernel provides a programming model that capitalizes upon the structural organization of the fly brain into a fixed number of functional modules to distinguish between these modules' local information processing capabilities and the connectivity patterns that link them. By defining mandatory communication interfaces that specify how data is transmitted between models of each of these modules regardless of their internal design, Neurokernel explicitly enables multiple researchers to collaboratively model the fruit fly's entire brain by integration of their independently developed models of its constituent processing units.

View Article and Find Full Text PDF

Temporal experience of odor gradients is important in spatial orientation of animals. The fruit fly Drosophila melanogaster exhibits robust odor-guided behaviors in an odor gradient field. In order to investigate how early olfactory circuits process temporal variation of olfactory stimuli, we subjected flies to precisely defined odor concentration waveforms and examined spike patterns of olfactory sensory neurons (OSNs) and projection neurons (PNs).

View Article and Find Full Text PDF

Past work demonstrated how monochromatic visual stimuli could be faithfully encoded and decoded under Nyquist-type rate conditions. Color visual stimuli were then traditionally encoded and decoded in multiple separate monochromatic channels. The brain, however, appears to mix information about color channels at the earliest stages of the visual system, including the retina itself.

View Article and Find Full Text PDF

We present algorithms for identifying multidimensional receptive fields directly from spike trains produced by biophysically-grounded neuron models. We demonstrate that only the projection of a receptive field onto the input stimulus space may be perfectly identified and derive conditions under which this identification is possible. We also provide detailed examples of identification of neural circuits incorporating spatiotemporal and spectrotemporal receptive fields.

View Article and Find Full Text PDF

We consider a class of neural circuit models with internal noise sources arising in sensory systems. The basic neuron model in these circuits consists of a dendritic stimulus processor (DSP) cascaded with a biophysical spike generator (BSG). The dendritic stimulus processor is modeled as a set of nonlinear operators that are assumed to have a Volterra series representation.

View Article and Find Full Text PDF

We present a multi-input multi-output neural circuit architecture for nonlinear processing and encoding of stimuli in the spike domain. In this architecture a bank of dendritic stimulus processors implements nonlinear transformations of multiple temporal or spatio-temporal signals such as spike trains or auditory and visual stimuli in the analog domain. Dendritic stimulus processors may act on both individual stimuli and on groups of stimuli, thereby executing complex computations that arise as a result of interactions between concurrently received signals.

View Article and Find Full Text PDF

We introduce a novel approach for a complete functional identification of biophysical spike-processing neural circuits. The circuits considered accept multidimensional spike trains as their input and comprise a multitude of temporal receptive fields and conductance-based models of action potential generation. Each temporal receptive field describes the spatiotemporal contribution of all synapses between any two neurons and incorporates the (passive) processing carried out by the dendritic tree.

View Article and Find Full Text PDF

We investigate neural architectures for identity preserving transformations (IPTs) on visual stimuli in the spike domain. The stimuli are encoded with a population of spiking neurons; the resulting spikes are processed and finally decoded. A number of IPTs are demonstrated including faithful stimulus recovery, as well as simple transformations on the original visual stimulus such as translations, rotations and zoomings.

View Article and Find Full Text PDF

We present a formal methodology for identifying a channel in a system consisting of a communication channel in cascade with an asynchronous sampler. The channel is modeled as a multidimensional filter, while models of asynchronous samplers are taken from neuroscience and communications and include integrate-and-fire neurons, asynchronous sigma/delta modulators and general oscillators in cascade with zero-crossing detectors. We devise channel identification algorithms that recover a projection of the filter(s) onto a space of input signals loss-free for both scalar and vector-valued test signals.

View Article and Find Full Text PDF

The massively parallel nature of video Time Encoding Machines (TEMs) calls for scalable, massively parallel decoders that are implemented with neural components. The current generation of decoding algorithms is based on computing the pseudo-inverse of a matrix and does not satisfy these requirements. Here we consider video TEMs with an architecture built using Gabor receptive fields and a population of Integrate-and-Fire neurons.

View Article and Find Full Text PDF

We investigate architectures for time encoding and time decoding of visual stimuli such as natural and synthetic video streams (movies, animation). The architecture for time encoding is akin to models of the early visual system. It consists of a bank of filters in cascade with single-input multi-output neural circuits.

View Article and Find Full Text PDF

The lack of a deeper understanding of how olfactory sensory neurons (OSNs) encode odors has hindered the progress in understanding the olfactory signal processing in higher brain centers. Here we employ methods of system identification to investigate the encoding of time-varying odor stimuli and their representation for further processing in the spike domain by Drosophila OSNs. In order to apply system identification techniques, we built a novel low-turbulence odor delivery system that allowed us to deliver airborne stimuli in a precise and reproducible fashion.

View Article and Find Full Text PDF

We present a general framework for the reconstruction of natural video scenes encoded with a population of spiking neural circuits with random thresholds. The natural scenes are modeled as space-time functions that belong to a space of trigonometric polynomials. The visual encoding system consists of a bank of filters, modeling the visual receptive fields, in cascade with a population of neural circuits, modeling encoding in the early visual system.

View Article and Find Full Text PDF