The retina is crucial for converting light into neuronal signals for visual perception. Understanding the retina's structure, function, and development is essential for vision research. It is known that the thyroid hormone (TH) receptor type beta 2 (TRβ2) is a key element in the regulation of cone differentiation in the retina, but other elements of TH signaling, such as transporters and enzyme deiodinases, have also been implicated in retinal cell development and survival.
View Article and Find Full Text PDFThe Krüppel-like factors (KLFs) have emerged as important transcriptional regulators of various cellular processes, including neural development. Some of them have been described as intrinsic factors involved in axon regeneration in the central nervous system (CNS) of vertebrates. Zebrafish are known for their ability to regenerate several tissues in adulthood, including the CNS, a capability lost during vertebrate evolution and absent in adult mammals.
View Article and Find Full Text PDFThyroid hormones are messengers that bind to specific nuclear receptors and regulate a wide range of physiological processes in the early stages of vertebrate embryonic development, including neurodevelopment and myelogenesis. We here tested the effects of reduced T3 availability upon the myelination process by treating zebrafish embryos with low concentrations of iopanoic acid (IOP) to block T4 to T3 conversion. Black Gold II staining showed that T3 deficiency reduced the myelin density in the forebrain, midbrain, hindbrain and the spinal cord at 3 and 7 dpf.
View Article and Find Full Text PDFAmphibians are an important vertebrate model system to understand anatomy, genetics and physiology. Importantly, the brain and spinal cord of adult urodels (salamanders) have an incredible regeneration capacity, contrary to anurans (frogs) and the rest of adult vertebrates. Among these amphibians, the axolotl (Ambystoma mexicanum) has gained most attention because of the surge in the understanding of central nervous system (CNS) regeneration and the recent sequencing of its whole genome.
View Article and Find Full Text PDFThyroid hormones (THs) are ancient signaling molecules that contribute to the regulation of metabolism, energy homeostasis and growth. In vertebrates, the hypothalamus-pituitary-thyroid (HPT) axis links the corresponding organs through hormonal signals, including thyrotropin releasing factor (TRF), and thyroid stimulating hormone (TSH) that ultimately activates the synthesis and secretion of THs from the thyroid gland. Although this axis is conserved among most vertebrates, the identity of the hypothalamic TRF that positively regulates TSH synthesis and secretion varies.
View Article and Find Full Text PDFGen Comp Endocrinol
September 2018
Teleosts are the most numerous class of living vertebrates. They exhibit great diversity in terms of morphology, developmental strategies, ecology and adaptation. In spite of this diversity, teleosts conserve similarities at molecular, cellular and endocrine levels.
View Article and Find Full Text PDFThyroid hormones, or THs, are well-known regulators of a wide range of biological processes that occur throughout the lifespan of all vertebrates. THs act through genomic mechanisms mediated by thyroid hormone receptors (TRs). The main product of the thyroid gland is thyroxine or T4, which can be further transformed by different biochemical pathways to produce at least 15 active or inactive molecules.
View Article and Find Full Text PDFThyroid hormones (THs) induce pleiotropic effects in vertebrates, mainly through the activation or repression of gene expression. These mechanisms involve thyroid hormone binding to thyroid hormone receptors, an event that is followed by the sequential recruitment of coactivator or corepressor proteins, which in turn modify the rate of transcription. In the present study, we looked for specific coregulators recruited by the long isoform of the teleostean thyroid hormone receptor beta 1 (L-Trb1) when bound to the bioactive TH, 3,5-T (T).
View Article and Find Full Text PDFGrowth hormone (GH), together with thyroid hormones (TH), regulates growth and development, and has critical effects on vertebrate metabolism. In ectotherms, these physiological processes are strongly influenced by environmental temperature. In reptiles, however, little is known about the direct influences of this factor on the somatotropic and thyroid axes.
View Article and Find Full Text PDFMol Cell Endocrinol
April 2016
T3 and cortisol activate or repress gene expression in virtually every vertebrate cell mainly by interacting with their nuclear hormone receptors. In contrast to the mechanisms for hormone gene activation, the mechanisms involved in gene repression remain elusive. In teleosts, the thyroid hormone receptor beta gene or thrb produces two isoforms of TRβ1 that differ by nine amino acids in the ligand-binding domain of the long-TRβ1, whereas the short-TRβ1 lacks the insert.
View Article and Find Full Text PDFThe stereospecific removal of iodine from thyroid hormones is an essential first step for T3 action and is catalyzed by three different deiodinases: D2 and D3 remove iodine only from the outer or inner ring, respectively, whereas D1 catalyzes both pathways. We used in silico predictions from vertebrate deiodinase sequences to identify two domains: the N-terminal variable region (VR) containing the transmembrane, hinge and linker domains, and the conserved or globular region (CR). Given the high sequence and structural identity of the CR among paralogs as well as of the VR among orthologs but not paralogs, we hypothesized that both the catalytic properties and the subcellular localization rely on the VR.
View Article and Find Full Text PDFThyroid hormone (TH) actions are mediated by triiodothyronine (T3), which acts by binding to the TH receptors (TRs). Since TH exert pleiotropic effects, interest has grown in identifying other possible bioactive thyronines that could explain their diversity of functions. Accordingly, 3,5-diiodothyronine (T2) has been shown to be bioactive.
View Article and Find Full Text PDFRecent studies in our laboratory have shown that in some teleosts, 3,5-di-iodothyronine (T2 or 3,5-T2) is as bioactive as 3,5,3'-tri-iodothyronine (T3) and that its effects are in part mediated by a TRβ1 (THRB) isoform that contains a 9-amino acid insert in its ligand-binding domain (long TRβ1 (L-TRβ1)), whereas T3 binds preferentially to a short TRβ1 (S-TRβ1) isoform that lacks this insert. To further understand the functional relevance of T2 bioactivity and its mechanism of action, we used in vivo and ex vivo (organotypic liver cultures) approaches and analyzed whether T3 and T2 differentially regulate the S-TRβ1 and L-TRβ1s during a physiological demand such as growth. In vivo, T3 and T2 treatment induced body weight gain in tilapia.
View Article and Find Full Text PDFFrom an evolutionary perspective, deiodinases may be considered pivotal players in the emergence and functional diversification of both thyroidal systems (TS) and their iodinated messengers. To better understand the evolutionary pathway and the concomitant functional diversification of vertebrate deiodinases, in the present review we summarized the highlights of the available information regarding this ubiquitous enzymatic component that represents the final, common physiological link of TS. The information reviewed here suggests that deiodination of tyrosine metabolites is an ancient feature of all chordates studied to date and consequently, that it precedes the integration of the TS that characterize vertebrates.
View Article and Find Full Text PDFThe study of the different factors regulating the bioactivity of thyroid hormones is of utmost relevance for an adequate understanding of the glandular pathophysiology. These factors must be considered by the clinician in order to achieve a successful diagnosis and treatment of glandular diseases. Among the factors regulating bioactivity of thyroid hormones are the following: A) Plasmatic membrane hormone transporters, which tissue-specific expression is responsible for the cellular uptake of hormones, B) A set of deiodinating enzymes which activate or inactivate intracellular thyroid hormone, and C) Nuclear receptors which are responsible for the different cellular responses at the transcriptional level.
View Article and Find Full Text PDFIodide is a trace element and a key component of thyroid hormones (TH). The availability of this halogen is the rate-limiting step for TH synthesis; therefore, thyroidal iodide uptake and recycling during TH synthesis are of major importance in maintaining an adequate supply. In the rat, the thyroid gland co-expresses a distinctive pair of intrathyroidal deiodinating enzymes: the thyroid iodotyrosine dehalogenase (tDh) and the iodothyronine deiodinase type 1 (ID1).
View Article and Find Full Text PDFThe three distinct but related isotypes of the iodothyronine deiodinase family: D1, D2, and D3, have been amply studied in vertebrate homeotherms and to a lesser extent in ectotherms, particularly in reptiles. Here, we report the molecular and kinetic characteristics of both the native and the recombinant hepatic D3 from the pine snake Pituophis deppei (PdD3). The complete PdD3 cDNA (1680 bp) encodes a protein of 287 amino acids (aa), which is the longest type 3 deiodinase so far cloned.
View Article and Find Full Text PDFThyroid hormone bioactivity is finely regulated at the cellular level by the peripheral iodothyronine deiodinases (D). The study of thyroid function in fish has been restricted mainly to teleosts, whereas the study and characterization of Ds have been overlooked in chondrichthyes. Here we report the cloning and operational characterization of both the native and the recombinant hepatic type 3 iodothyronine deiodinase in the tropical shark Chiloscyllium punctatum.
View Article and Find Full Text PDFWe review the experimental evidence accumulated within the past decade regarding the physiologic, biochemical, and molecular characterization of iodothyronine deiodinases (IDs) in piscine species. Agnathans, chondrichthyes, and teleosts express the three isotypes of IDs: ID1, ID2, and ID3, which are responsible for the peripheral fine-tuning of thyroid hormone (TH) bioactivity. At the molecular and operational level, fish IDs share properties with their corresponding vertebrate counterparts.
View Article and Find Full Text PDFWe review the role of iodothyronine deiodinases (IDs) in the evolution of vertebrate thyroidal systems within the larger context of biological metabolism of halogens. Since the beginning of life, the ubiquity of organohalogens in the biosphere has provided a major selective pressure for the evolution and conservation of cellular mechanisms specialized in halogen metabolism. Among naturally available halogens, iodine emerged as a critical component of unique developmental and metabolic messengers.
View Article and Find Full Text PDFSubstrate availability has been thought to be a major regulator of the outer-ring deiodinating pathway (ORD) in fish. However, current information strongly suggests that while fish iodothyronine deiodinase type 2 (D2) responds to iodothyronines in the same manner as its mammalian counterpart, fish deiodinase type 1 (D1) exhibits a distinct response. Furthermore, 3,5-T2, generally considered to be an inactive product of iodothyronine metabolism, has recently been described as bioactive, but its effects upon D1 and D2 are not yet known.
View Article and Find Full Text PDFGen Comp Endocrinol
January 2003
The presence of a type 1 deiodinase (D1) in the liver of teleosts has been a controversial issue. Recently we characterized the deiodinase activity in rainbow trout and killifish liver and found that the liver of both species co-expresses the two enzymes (D1 and D2) that catalyze the outer ring-deiodinating pathway. We here report the cloning and characterization of an mRNA from the liver of the killifish Fundulus heteroclitus that encodes a D1 (FhD1).
View Article and Find Full Text PDF