Chem Res Toxicol
November 2017
The ability for DNA polymerases (Pols) to overcome a variety of obstacles in its path to maintain genomic stability during replication is a complex endeavor. It requires the coordination of multiple Pols with differing specificities through molecular control and access to the replisome. Although a number of contacts directly between Pols and accessory proteins have been identified, forming the basis of a variety of holoenzyme complexes, the dynamics of Pol active site substitutions remain uncharacterized.
View Article and Find Full Text PDFThe ability of the replisome to seamlessly coordinate both high fidelity and translesion DNA synthesis requires a means to regulate recruitment and binding of enzymes from solution. Co-occupancy of multiple DNA polymerases within the replisome has been observed primarily in bacteria and is regulated by posttranslational modifications in eukaryotes, and both cases are coordinated by the processivity clamp. Because of the heterotrimeric nature of the PCNA clamp in some archaea, there is potential to occupy and regulate specific polymerases at defined subunits.
View Article and Find Full Text PDFBioorg Med Chem Lett
September 2011
Two base excision repair glycosylase (BER) transition state (TS) mimics, (3R,4R)-1-benzyl (hydroxymethyl) pyrrolidin-3-ol (1NBn) and (3R,4R)-(hydroxymethyl) pyrrolidin-3-ol (1N), were synthesized using an improved method. Several BER glycosylases that repair oxidized DNA bases, bacterial formamidopyrimdine glycosylase (Fpg), human OG glycosylase (hOGG1) and human Nei-like glycosylase 1 (hNEIL1) exhibit exceptionally high affinity (K(d)∼pM) with DNA duplexes containing the 1NBn and 1N nucleotide. Notably, comparison of the K(d) values of both TS mimics relative to an abasic analog (THF) in duplex contexts paired opposite C or A suggest that these DNA repair enzymes use distinctly different mechanisms for damaged base recognition and catalysis despite having overlapping substrate specificities.
View Article and Find Full Text PDF