Diabetic retinopathy is considered a neurovascular disorder, hyperglycemia being considered the main risk factor for this pathology. Diabetic retinopathy also presents features of a low-grade chronic inflammatory disease, including increased levels of cytokines in the retina, such as interleukin-1 beta (IL-1). However, how high glucose and IL-1 affect the different retinal cell types remains to be clarified.
View Article and Find Full Text PDFDiabetic retinopathy is a leading cause of vision loss and blindness. Increasing evidence has shown that the neuronal components of the retina are affected even before the detection of vascular lesions. Hyperglycemia is considered the main pathogenic factor for the development of diabetic complications.
View Article and Find Full Text PDFPurpose: The impairment of glutamatergic neurotransmission has been associated with diabetic complications in the central nervous system, such as diabetic retinopathy. Here, we investigated the effect of elevated glucose exposure and diabetes on α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor composition, subunit phosphorylation, and the association of the GluA2 subunit with accessory proteins in the retina.
Methods: The subunit composition of AMPA receptors and the association of the GluA2 subunit with modulatory proteins were evaluated with coimmunoprecipitation in retinal neural cell cultures and in the retina of experimentally induced-diabetic rats.
Diabetic retinopathy is a leading cause of visual loss and blindness, characterized by microvascular dysfunction. Hyperglycemia is considered the major pathogenic factor for the development of diabetic retinopathy and is associated with increased oxidative/nitrosative stress in the retina. Since heme oxygenase-1 (HO-1) is an enzyme with antioxidant and protective properties, we investigated the potential protective role of HO-1 in retinal endothelial cells exposed to high glucose and oxidative/nitrosative stress conditions.
View Article and Find Full Text PDFDiabetic retinopathy (DR) is a leading cause of vision loss among working-age adults. Retinal endothelial cell apoptosis is an early event in DR, and oxidative stress is known to play an important role in this pathology. Recently, we found that high glucose induces apoptosis in retinal neural cells by a caspase-independent mechanism.
View Article and Find Full Text PDFPurpose: Diabetic retinopathy is associated with inflammation. The authors investigated the influence of Müller cells on leukocyte adhesion to retinal endothelial cells.
Methods: ICAM-1 levels were assessed by Western blotting and immunocytochemistry.