ER-119884 and E5700, novel arylquinuclidine derivatives developed as cholesterol-lowering agents, were potent in vitro growth inhibitors of both proliferative stages of Leishmania amazonensis, the main causative agent of cutaneous leishmaniasis in South America, with the 50% inhibitory concentrations (IC(50)s) being in the low-nanomolar to subnanomolar range. The compounds were very potent noncompetitive inhibitors of native L. amazonensis squalene synthase (SQS), with inhibition constants also being in the nanomolar to subnanomolar range.
View Article and Find Full Text PDFThere is an urgent need for the development of new drugs for the treatment of tropical parasitic diseases such as Chagas' disease and leishmaniasis. One potential drug target in the organisms that cause these diseases is sterol biosynthesis. This paper describes the design and synthesis of quinuclidine derivatives as potential inhibitors of a key enzyme in sterol biosynthesis, squalene synthase (SQS).
View Article and Find Full Text PDFThere is no effective treatment for the prevalent chronic form of Chagas' disease in Latin America. Its causative agent, the protozoan parasite Trypanosoma cruzi, has an essential requirement for ergosterol, and ergosterol biosynthesis inhibitors, such as the antifungal drug posaconazole, have potent trypanocidal activity. The antiarrhythmic compound amiodarone, frequently prescribed for the symptomatic treatment of Chagas' disease patients, has also recently been shown to have antifungal activity.
View Article and Find Full Text PDFChagas' disease is a serious public health problem in Latin America, and no treatment is available for the prevalent chronic stage. Its causative agent, Trypanosoma cruzi, requires specific endogenous sterols for survival, and we have recently demonstrated that squalene synthase (SQS) is a promising target for antiparasitic chemotherapy. E5700 and ER-119884 are quinuclidine-based inhibitors of mammalian SQS that are currently in development as cholesterol- and triglyceride-lowering agents in humans.
View Article and Find Full Text PDFWe present the results of the first detailed study of the molecular and cellular basis of the antiproliferative effects of the bisphosphonate risedronate (Ris) on Trypanosoma cruzi, the causative agent of Chagas' disease. Ris and related compounds, which block poly-isoprenoid biosynthesis at the level of farnesyl pyrophosphate synthase, are currently used for the treatment of bone resorption disorders, but also display selective activity against trypanosomatid and apicomplexan parasites. Ris induced a dose-dependent effect on growth of the extracellular epimastigote form of T.
View Article and Find Full Text PDF