Publications by authors named "Aumnart Chinpongpanich"

Background: Salt stress, a major plant environmental stress, is a critical constraint for rice productivity. Dissecting the genetic loci controlling salt tolerance in rice for improving productivity, especially at the flowering stage, remains challenging. Here, we conducted a genome-wide association study (GWAS) of salt tolerance based on exome sequencing of the Thai rice accessions.

View Article and Find Full Text PDF

Background: Calmodulin (CaM) is an important calcium sensor protein that transduces Ca signals in plant stress signaling pathways. A previous study has revealed that transgenic rice over-expressing the calmodulin gene OsCam1-1 (LOC_Os03g20370) is more tolerant to salt stress than wild type. To elucidate the role of OsCam1-1 in the salt stress response mechanism, downstream components of the OsCam1-1-mediated response were identified and investigated by transcriptome profiling and target identification.

View Article and Find Full Text PDF

A large number of calmodulin-like (CML) proteins are present in plants, but there is little detailed information on the functions of these proteins in rice (Oryza sativa L.). Here, the CML3 protein from rice (OsCML3) and its truncated form lacking the C-terminal extension (OsCML3m) were found to exhibit a Ca2+-binding property and subsequent conformational change, but the ability to bind the CaM kinase II peptide was only observed for OsCML3m.

View Article and Find Full Text PDF

Background: In plants, a large family of calmodulin (CaM) and CaM-like (CML) proteins transduce the increase in cytosolic Ca2+ concentrations by binding to and altering the activities of target proteins, and thereby affecting the physiological responses to a vast array of stimuli. Here, transcript expression analysis of Cam and CML gene family members in rice (Oryza sativa L.) was extensively examined.

View Article and Find Full Text PDF

Calmodulin (CaM) transduces the increase in cytosolic Ca(2+) concentrations by binding to and altering the activities of target proteins, thereby affecting the physiological responses to the vast array of stimuli. Here, we examined the purified recombinant proteins encoded by three Cam and eight Cam-like (CML) genes from rice. With the exception of one OsCML, all recombinant proteins could be purified by Ca(2+)-dependent hydrophobic chromatography and exhibited an electrophoretic mobility shift when incubated with Ca(2+).

View Article and Find Full Text PDF