Publications by authors named "Aulenbacher K"

Microbeam radiotherapy (MRT) is a novel concept in radiation oncology with arrays of alternating micrometer-wide high-dose peaks and low-dose valleys. Preclinical experiments have shown a lower normal tissue toxicity for MRT with similar tumor control rates compared to conventional radiotherapy. A promising candidate for the demanded compact radiation source is the line-focus x-ray tube.

View Article and Find Full Text PDF

In the future, a new superconducting (SC) continuous wave (CW) high intensity heavy ion HElmholtz LInear ACcelerator (HELIAC) should provide ion beams with maximum beam energy above the Coulomb barrier for the Super Heavy Element program at GSI (Gesellschaft für Schwerionenforschung, in Engl.: Association for Heavy Ion Research). The HELIAC consists of a SC main accelerator supplied by a normal conducting injector, which comprises an electron cyclotron resonance ion source, a radio-frequency quadrupole, and two separate interdigital H-mode drift-tube linear accelerator cavities, based on an Alternating Phase Focusing (APF) scheme.

View Article and Find Full Text PDF

Background: Microbeam and x-ray FLASH radiation therapy are innovative concepts that promise reduced normal tissue toxicity in radiation oncology without compromising tumor control. However, currently only large third-generation synchrotrons deliver acceptable x-ray beam qualities and there is a need for compact, hospital-based radiation sources to facilitate clinical translation of these novel treatment strategies.

Purpose: We are currently setting up the first prototype of a line-focus x-ray tube (LFxT), a promising technology that may deliver ultra-high dose rates (UHDRs) of more than 100 Gy/s from a table-top source.

View Article and Find Full Text PDF

The upcoming commissioning of the superconducting (SC) continuous wave Helmholtz linear accelerators first of series cryomodule is going to demand precise alignment of the four internal SC cavities and two SC solenoids. For optimal results, a beam-based alignment method is used to reduce the misalignment of the whole cryomodule, as well as its individual components. A symmetric beam of low transverse emittance is required for this method, which is to be formed by a collimation system.

View Article and Find Full Text PDF

Background And Purpose: Microbeam radiotherapy (MRT) is a preclinical concept in radiation oncology with arrays of alternating micrometer-wide high-dose peaks and low-dose valleys. Experiments demonstrated a superior normal tissue sparing at similar tumor control rates with MRT compared to conventional radiotherapy. Possible clinical applications are currently limited to large third-generation synchrotrons.

View Article and Find Full Text PDF

We report on a new measurement of the beam transverse single spin asymmetry in electron-proton elastic scattering, A_{⊥}^{ep}, at five beam energies from 315.1 to 1508.4 MeV and at a scattering angle of 30°<θ<40°.

View Article and Find Full Text PDF

We report on the first Q^{2}-dependent measurement of the beam-normal single spin asymmetry A_{n} in the elastic scattering of 570 MeV vertically polarized electrons off ^{12}C. We cover the Q^{2} range between 0.02 and 0.

View Article and Find Full Text PDF

New measurements of the beam normal single spin asymmetry in the electron elastic and quasielastic scattering on the proton and deuteron, respectively, at large backward angles and at ⟨Q^{2}⟩=0.22  (GeV/c)^{2} and ⟨Q^{2}⟩=0.35  ( GeV/c)^{2} are reported.

View Article and Find Full Text PDF

We have developed a Mott electron polarimeter for the Mainzer microtron (MAMI) accelerator in Mainz, Germany. At beam energies ranging between 1.0 and 3.

View Article and Find Full Text PDF

This article reports stable photoluminescence and high-contrast optically detected electron spin resonance (ODESR) from single nitrogen-vacancy (NV) defect centers created within ultrasmall, disperse nanodiamonds of radius less than 4 nm. Unexpectedly, the efficiency for the production of NV fluorescent defects by electron irradiation is found to be independent of the size of the nanocrystals. Fluorescence lifetime imaging shows lifetimes with a mean value of around 17 ns, only slightly longer than the bulk value of the defects.

View Article and Find Full Text PDF

A new measurement of the parity violating asymmetry in elastic electron scattering on hydrogen at backward angles and at a four momentum transfer of Q;{2} = 0.22 (Ge V / c);{2} is reported here. The measured asymmetry is A_{LR} = (-17.

View Article and Find Full Text PDF

We report on a measurement of the parity violating asymmetry in the elastic scattering of polarized electrons off unpolarized protons with the A4 apparatus at MAMI in Mainz at a four momentum transfer value of Q(2)=0.108 (GeV/c)(2) and at a forward electron scattering angle of 30 degrees p)=[-1.

View Article and Find Full Text PDF

We report on a measurement of the asymmetry in the scattering of transversely polarized electrons off unpolarized protons, A( perpendicular), at two Q2 values of 0.106 and 0.230 (GeV/c)(2) and a scattering angle of 30 degrees View Article and Find Full Text PDF

We report on a measurement of the parity-violating asymmetry in the scattering of longitudinally polarized electrons on unpolarized protons at a Q2 of 0.230 (GeV/c)(2) and a scattering angle of theta (e) = 30 degrees - 40 degrees. Using a large acceptance fast PbF2 calorimeter with a solid angle of delta omega = 0.

View Article and Find Full Text PDF

The helicity dependence of the gamma-->p-->-->ppi(0) reaction has been measured for the first time in the photon-energy range from 550 to 790 MeV. The experiment, performed at the Mainz microtron MAMI, used a 4pi-detector system, a circularly polarized, tagged photon beam, and a longitudinally polarized frozen-spin target. These data are predominantly sensitive to the D13(1520) resonance and are used to determine its helicity amplitudes.

View Article and Find Full Text PDF

The helicity dependence of the single pion photoproduction on the proton has been measured in the energy range from 200 to 450 MeV for the first time. The experiment, performed at the Mainz microtron MAMI, used a 4pi-detector system, a circularly polarized, tagged photon beam, and a frozen-spin target. The data obtained provide new information for multipole analyses of pion photoproduction and determine the main contributions to the Gerasimov-Drell-Hearn sum rule and the forward spin polarizability gamma(0).

View Article and Find Full Text PDF