In this study, for the first time, biobased photopolymers were synthesized from phloroglucinol tris epoxy with and without different comonomers, phloroglucinol, 1,4:3,6-dianhydro-D-sorbitol, and 1,4-cyclohexanedimethanol. The rheological, thermal, mechanical, shape-memory, and antimicrobial properties of photopolymers were investigated. The addition of comonomers reduced the photocuring rate (gel time increased from 325 s to 434-861 s) and rigidity (storage modulus decreased from 330.
View Article and Find Full Text PDFIn this paper, for the first time, photopolymers were synthesized from glycerol acrylates with different numbers of functional groups, 2-hydroxy-3-phenoxypropyl acrylate, glycerol dimethacrylate or glycerol trimethacrylate, without and with the addition of vanillin styrene. The photocuring kinetics were monitored by real-time photorheometry. The mechanical, rheological, thermal, antimicrobial and shape-memory properties of the photopolymers were investigated.
View Article and Find Full Text PDFA series of thermoresponsive shape-memory photopolymers have been synthesized from the mixtures of two biobased monomers, tetrahydrofurfuryl acrylate and tridecyl methacrylate, with the addition of a small amount of 1,3-benzendithiol (molar ratio of monomers 0-10:0.5:0.03, respectively).
View Article and Find Full Text PDFA novel dual cure photopolymerizable system was developed by combining two plant-derived acrylic monomers, acrylated epoxidized soybean oil and vanillin dimethacrylate, as well as the thiol monomer pentaerythritol tetrakis (3-mercaptopropionate). Carefully selected resin composition allowed the researchers to overcome earlier stability/premature polymerization problems and to obtain stable (up to six months at 4 °C) and selectively-polymerizable resin. The resin demonstrated rapid photocuring without an induction period and reached a rigidity of 317.
View Article and Find Full Text PDFNovel thermo-responsive shape-memory vanillin-based photopolymers have been developed for microtransfer molding. Different mixtures of vanillin dimethacrylate with tridecyl methacrylate and 1,3-benzenedithiol have been tested as photocurable resins. The combination of the different reaction mechanisms, thiol-acrylate photopolymerization, and acrylate homopolymerization, that were tuned by changing the ratio of monomers, resulted in a wide range of the thermal and mechanical properties of the photopolymers obtained.
View Article and Find Full Text PDFThe use of renewable sources for optical 3D printing instead of petroleum-based materials is increasingly growing. Combinations of photo- and thermal polymerization in dual curing processes can enhance the thermal and mechanical properties of the synthesized thermosets. Consequently, thiol-ene/thiol-epoxy polymers were obtained by combining UV and thermal curing of acrylated epoxidized soybean oil and epoxidized linseed oil with thiols, benzene-1,3-dithiol and pentaerythritol tetra(3-mercaptopropionate).
View Article and Find Full Text PDFThe investigation of the influence of vanillin acrylate-based resin composition on photocuring kinetics and antimicrobial properties of the resulting polymers was performed in order to find efficient photocurable systems for optical 3D printing of bio-based polymers with tunable rigidity, as well as with antibacterial and antifungal activity. Two vanillin derivatives, vanillin diacrylate and vanillin dimethacrylate, were tested in photocurable systems using phenyl bis(2,4,6-trimethylbenzoyl)phosphine oxide as a photoinitiator. The influence of vanillin acrylate monomer, amount of photoinitiator, presence and amount of dithiol, and presence of solvent on photocuring kinetics was investigated by real-time photoreometry.
View Article and Find Full Text PDFThe investigation of biobased systems as photocurable resins for optical 3D printing has attracted great attention in recent years; therefore, novel vanillin acrylate-based resins were designed and investigated. Cross-linked polymers were prepared by radical photopolymerization of vanillin derivatives (vanillin dimethacrylate and vanillin diacrylate) using ethyl(2,4,6-trimethylbenzoyl)phenylphosphinate as photoinitiator. The changes of rheological properties were examined during the curing with ultraviolet/visible irradiation to detect the influences of solvent, photoinitiator, and vanillin derivative on cross-linking rate and network formation.
View Article and Find Full Text PDF