Molten mixtures of lithium chloride and metallic lithium (LiCl-Li) play an essential role in the electrolytic reduction of various metal oxides. These mixtures possess unique high temperature physical and chemical properties that have been investigated for decades. However, due to their extreme chemical reactivity, no study to date has been capable of definitively proving the basic physical nature of Li dissolution in molten LiCl.
View Article and Find Full Text PDFThe production of nanoparticles through biosynthesis is a reliable, non-toxic, and sustainable alternative to conventional chemical and physical methods of production. While noble metals, such as palladium, gold, and silver, have been formed via bioreduction, biologically-induced reduction of electroactive elements to a metallic state has not been reported previously. Herein, we report the reduction of an electroactive element, molybdenum, via microbial reduction using Clostridium pasteurianum.
View Article and Find Full Text PDFMolten mixtures of lithium chloride and metallic lithium are of significant interest in various metal oxide reduction processes. These solutions have been reported to exhibit seemingly anomalous physical characteristics that lack a comprehensive explanation. In the current work, the physical chemistry of molten solutions of lithium chloride and metallic lithium, with and without lithium oxide, was investigated using in situ Raman spectroscopy.
View Article and Find Full Text PDF