Bone defects and injuries are common, and better solutions are needed for improved regeneration and osseointegration. Bioresorbable membranes hold great potential in bone tissue engineering due to their high surface area and versatility. In this context, polymers such as poly(lactic-co-glycolic acid) (PLGA) can be combined with osteoconductive materials like hydroxyapatite (HA) nanoparticles (NPs) to create membranes with enhanced bioactivity and bone regeneration.
View Article and Find Full Text PDFHypusine amino acid [N-(4-amino-2-hydroxybutyl)-lysine] was first isolated in 1971 from bovine brain extracts. Hypusine originates from a post-translational modification at the eukaryotic translation initiation factor 5A (eIF5A), a protein produced by archaebacteria and eukaryotes. The eIF5A protein is the only one described containing the hypusine residue, which is essential for its activity.
View Article and Find Full Text PDFThe development of new biomaterials with outstanding mechanical properties and high biocompatibility has been a significant challenge in the last decades. Nanocrystalline metals have provided new opportunities in producing high-strength biomaterials, but the biocompatibility of these nanometals needs to be improved. In this study, we introduce metal-protein nanocomposites as high-strength biomaterials with superior biocompatibility.
View Article and Find Full Text PDFImpacts by small solar system bodies (meteoroids, asteroids, comets and transitional objects) are characterized by a combination of energy dynamics and chemical modification on both terrestrial and small solar system bodies. In this context, the discovery of glycine amino acid in meteorites and comets has led to a hypothesis that impacts by astronomical bodies could contribute to delivery and polymerization of amino acids in the early Earth to generate proteins as essential molecules for life. Besides the possibility of abiotic polymerization of glycine, its decomposition by impacts could generate reactive groups to form other essential organic biomolecules.
View Article and Find Full Text PDFFood Sci Nutr
October 2020
Pomegranate (.) has been used in traditional herbal medicine by several cultures as an anti-inflammatory, antioxidant, antihyperglycemic, and for treatment and prevention of cancer and other diseases. Different parts of the fruit, extraction methods, and solvents can define the chemical profile of the obtained extracts and their biological activities.
View Article and Find Full Text PDFThis study aimed to evaluate whether the development and/or maintenance of chronic-latent muscle hyperalgesia is modulated by P2X3 receptors. We also evaluate the expression of P2X3 receptors and PKCε of dorsal root ganglions during these processes. A mouse model of chronic-latent muscle hyperalgesia, induced by carrageenan and evidenced by PGE, was used.
View Article and Find Full Text PDFDespite significant studies on mechanical properties of high-entropy alloys (HEAs), there have been limited attempts to examine the biocompatibility of these alloys. In this study, a lattice-softened high-entropy alloy TiAlFeCoNi with ultrahigh hardness (examined by Vickers method), low elastic modulus (examined by nanoindentation) and superior activity for cell proliferation/viability/cytotoxicity (examined by MTT assay) was developed by employing imperial data and thermodynamic calculations. The designated alloy after casting was processed further by high-pressure torsion (HPT) to improve its hardness via the introduction of nanograins, dislocations and order-disorder transformation.
View Article and Find Full Text PDFAnalysis of the transcriptome of organisms exposed to toxicants offers new insights for ecotoxicology, but further research is needed to enhance interpretation of results and effectively incorporate them into useful environmental risk assessments. Factors that must be clarified to improve use of transcriptomics include assessment of the effect of organism sex within the context of toxicant exposure. Amphipods are well recognized as model organisms for toxicity evaluation because of their sensitivity and amenability to laboratory conditions.
View Article and Find Full Text PDFThe hormone insulin plays a central role in the metabolism of carbohydrates, lipids, and proteins. In relation to protein metabolism, insulin stimulates amino acid uptake and activates protein synthesis in responsive cells by modulation of signal transduction pathways, such as associated to Akt/PkB, mTOR, S6Ks, 4E-BP1, and several translation initiation/elongation factors. In this context, there is no information on direct cellular treatment with insulin and effects on eukaryotic translation initiation factor 5A (eIF5A) regulation.
View Article and Find Full Text PDFEukaryotic translation initiation factor 5A (eIF5A), a protein containing the amino acid residue hypusine required for its activity, is involved in a number of physiological and pathological cellular processes. In humans, several EIF5A1 transcript variants encode the canonical eIF5A1 isoform B, whereas the hitherto uncharacterized variant A is expected to code for a hypothetical eIF5A1 isoform, referred to as isoform A, which has an additional N-terminal extension. Herein, we validate the existence of eIF5A1 isoform A and its production from transcript variant A.
View Article and Find Full Text PDFThe nests of social insects provide suitable microenvironments for many microorganisms as they offer stable environmental conditions and a rich source of food [1-4]. Microorganisms in turn may provide several benefits to their hosts, such as nutrients and protection against pathogens [1, 4-6]. Several examples of symbiosis between social insects and microorganisms have been found in ants and termites.
View Article and Find Full Text PDFBackground: Thyroid hormones (THs) are known to regulate protein synthesis by acting at the transcriptional level and inducing the expression of many genes. However, little is known about their role in protein expression at the post-transcriptional level, even though studies have shown enhancement of protein synthesis associated with mTOR/p70S6K activation after triiodo-L-thyronine (T3) administration. On the other hand, the effects of TH on translation initiation and polypeptidic chain elongation factors, being essential for activating protein synthesis, have been poorly explored.
View Article and Find Full Text PDFTranscription factors play a key role in transcription regulation as they recognize and directly bind to defined sites in promoter regions of target genes, and thus modulate differential expression. The overall process is extremely dynamic, as they have to move through the nucleus and transiently bind to chromatin in order to regulate gene transcription. To identify transcription factors that affect glycogen accumulation in Neurospora crassa, we performed a systematic screen of a deletion strains set generated by the Neurospora Knockout Project and available at the Fungal Genetics Stock Center.
View Article and Find Full Text PDFThe toxicity of palmitic acid (PA) towards a human T-lymphocyte cell line (Jurkat) has been previously investigated but the mechanism(s) of PA action were unknown. In the current study, Jurkat cells were treated with sub-lethal concentrations of PA (50-150µM) and the activity of various signaling proteins was investigated. PA-induced apoptosis and mitochondrial dysfunction in a dose-dependent manner as evaluated by DNA fragmentation assay and depolarization of the mitochondrial membrane, respectively.
View Article and Find Full Text PDF