Publications by authors named "Augusto C I Montezano"

Exercise training reverses atherosclerotic risk factors associated with metabolic syndrome and obesity. The aim of the present study was to determine the molecular anti-inflammatory, anti-oxidative and anti-atherogenic effects in aorta from rats with high-fat diet-induced obesity. Male Sprague-Dawley rats were placed on a high-fat (HFD) or control (CD) diet for 12 weeks.

View Article and Find Full Text PDF

We demonstrated a role for the Mg(2+) transporter TRPM7, a bifunctional protein with channel and α-kinase domains, in aldosterone signaling. Molecular mechanisms underlying this are elusive. Here we investigated the function of TRPM7 and its α-kinase domain on Mg(2+) and pro-inflammatory signaling by aldosterone.

View Article and Find Full Text PDF

Aims: We demonstrated c-Src activation as a novel non-genomic signalling pathway for aldosterone in vascular smooth muscle cells (VSMCs). Here, we investigated molecular mechanisms and biological responses of this phenomenon, focusing on the role of lipid rafts/caveolae and platelet-derived growth factor receptor (PDGFR) in c-Src-regulated proinflammatory responses by aldosterone.

Methods And Results: Studies were performed in cultured VSMCs from Wistar-Kyoto (WKY) rats and caveolin-1 knockout (Cav 1(-/-)) and wild-type mice.

View Article and Find Full Text PDF

Hyperaldosteronism is associated with hypertension, cardiovascular fibrosis, and electrolyte disturbances, including hypomagnesemia. Mechanisms underlying aldosterone-mediated Mg(2+) changes are unclear, but the novel Mg(2+) transporters TRPM6 and TRPM7 may be important. We examined whether aldosterone influences renal TRPM6/7 and the TRPM7 downstream target annexin-1 and tested the hypothesis that Mg(2+) administration ameliorates aldosterone-induced cardiovascular and renal injury and prevents aldosterone-associated hypertension.

View Article and Find Full Text PDF

We demonstrated previously that, in mice with chronic angiotensin II-dependent hypertension, gp91phox-containing NADPH oxidase is not involved in the development of high blood pressure, despite being important in redox signaling. Here we sought to determine whether a gp91phox homologue, Nox1, may be important in blood pressure elevation and activation of redox-sensitive pathways in a model in which the renin-angiotensin system is chronically upregulated. Nox1-deficient mice and transgenic mice expressing human renin (TTRhRen) were crossed, and 4 genotypes were generated: control, TTRhRen, Nox1-deficient, and TTRhRen Nox1-deficient.

View Article and Find Full Text PDF

We have demonstrated recently [Callera, Touyz, Teixeira, Muscara, Carvalho, Fortes, Schiffrin and Tostes (2003) Hypertension 42, 811-817] that increased vascular oxidative stress in DOCA (deoxycorticosterone acetate)-salt rats is associated with activation of the ET (endothelin) system via ETA receptors. The exact source of ET-1-mediated oxidative stress remains unclear. The aim of the present study was to investigate whether ET-1 increases generation of ROS (reactive oxygen species) in DOCA-salt hypertension through NADPH-oxidase-dependent mechanisms.

View Article and Find Full Text PDF

Aldosterone plays an important role in the pathogenesis of hypertension. We previously demonstrated that nongenomic signaling by aldosterone in vascular smooth muscle cells occurs through c-Src-dependent pathways. Here we tested the hypothesis that upregulation of c-Src by aldosterone plays a role in increased mitogen-activated protein (MAP) kinase activation, [3H]-proline incorporation, and NADPH-driven generation of reactive oxygen species, thereby inducing cell growth, collagen production, and inflammation, respectively, in vascular smooth muscle cells from spontaneously hypertensive rats.

View Article and Find Full Text PDF

Intracellular Mg2+ depletion has been implicated in vascular dysfunction in hypertension. We demonstrated that transient receptor potential melastatin 7 (TRPM7) cation channels mediate Mg2+ influx in VSMCs. Whether this plays a role in [Mg2+]i deficiency in hypertension is unclear.

View Article and Find Full Text PDF