Publications by authors named "Augustine Urbas"

Quasi-3D plasmonic nanostructures are in high demand for their ability to manipulate and enhance light-matter interactions at subwavelength scales, making them promising building blocks for diverse nanophotonic devices. Despite their potential, the integration of these nanostructures with optical sensors and imaging systems on a large scale poses challenges. Here, a robust technique for the rapid, scalable, and seamless replication of quasi-3D plasmonic nanostructures is presented straight from their production wafers using a microbubble process.

View Article and Find Full Text PDF

Linear gratings polarizers provide remarkable potential to customize the polarization properties and tailor device functionality via dimensional tuning of configurations. Here, we extensively investigate the polarization properties of single- and double-layer linear grating, mainly focusing on self-aligned bilayer linear grating (SABLG), serving as a wire grid polarizer in the mid-wavelength infrared (MWIR) region. Computational analyses revealed the polarization properties of SABLG, highlighting enhancement in TM transmission and reduction in TE transmission compared to single-layer linear gratings (SLG) due to optical cavity effects.

View Article and Find Full Text PDF

Metasurfaces, optics made from subwavelength-scale nanostructures, have been limited to millimeter-sizes by the scaling challenge of producing vast numbers of precisely engineered elements over a large area. In this study, we demonstrate an all-glass 100 mm diameter metasurface lens (metalens) comprising 18.7 billion nanostructures that operates in the visible spectrum with a fast -number (/1.

View Article and Find Full Text PDF

Inverse-vulcanized polymeric sulfur has received considerable attention for application in waste-based infrared (IR) polarizers with high polarization sensitivities, owing to its high transmittance in the IR region and thermal processability. However, there have been few reports on highly sensitive polymeric sulfur-based polarizers by replication of pre-simulated dimensions to achieve a high transmission of the transverse magnetic field (T ) and extinction ratio (ER). Herein, a 400-nanometer-pitch mid-wavelength infrared bilayer linear polarizer with self-aligned metal gratings is introduced on polymeric sulfur gratings integrated with a spacer layer (SM-polarizer).

View Article and Find Full Text PDF

The conventional process for developing an optimal design for nonlinear optical responses is based on a trial-and-error approach that is largely inefficient and does not necessarily lead to an ideal result. Deep learning can automate this process and widen the realm of nonlinear geometries and devices. This research illustrates a deep learning framework used to create an optimal plasmonic design for a nonlinear metamaterial.

View Article and Find Full Text PDF

Chain-like magnetic self-organizations have been documented for micron/submicron-scale magnetic particles. However, the positions of the particles are not stationary in a sustaining fluid owing to Brownian translational motion, resulting in irregular magnetic self-assembly. Toward the development of a programmable and reversible magnetic self-assembly, we report a stepwise collective magnetic self-assembly with periodic polymeric micropillar arrays containing magnetic particles.

View Article and Find Full Text PDF

Sunlight-based desalination is one of the most environment-friendly, low-cost methods for obtaining freshwater on the planet. We implemented a biomimetic three-dimensional (3D) solar evaporator, improved by a solar-induced air-flow updraft. A carbon-coated polyvinyl alcohol (PVA) foam allowed us to achieve perfect absorption of ultrabroadband sunlight and continuously provide water to tall 3D structures.

View Article and Find Full Text PDF

Quasi-three-dimensionally designed metal-dielectric hybrid nanoantennas have provided a unique capability to control light at the nanoscale beyond the diffraction limit, which has enabled powerful optical manipulation techniques. However, the fabrication of these nanoantennas has largely relied on the use of nanolithography techniques that are time- and cost-consuming, impeding their application in wide-ranging use. Herein, we report a versatile methodology enabling the repetitive replication of these nanoantennas from their silicon molds with tailored optical features for infrared bandpass filtering.

View Article and Find Full Text PDF

Information recovery from incomplete measurements, typically performed by a numerical means, is beneficial in a variety of classical and quantum signal processing. Random and sparse sampling with nanophotonic and light scattering approaches has received attention to overcome the hardware limitations of conventional spectrometers and hyperspectral imagers but requires high-precision nanofabrications and bulky media. We report a simple spectral information processing scheme in which light transport through an Anderson-localized medium serves as an entropy source for compressive sampling directly in the frequency domain.

View Article and Find Full Text PDF

The vision system of arthropods consists of a dense array of individual photodetecting elements across a curvilinear surface. This compound-eye architecture could be a useful model for optoelectronic sensing devices that require a large field of view and high sensitivity to motion. Strategies that aim to mimic the compound-eye architecture involve integrating photodetector pixels with a curved microlens, but their fabrication on a curvilinear surface is challenged by the use of standard microfabrication processes that are traditionally designed for planar, rigid substrates (e.

View Article and Find Full Text PDF

It is widely discussed in the literature that a problem of reduction of thermal noise of mid-wave and long-wave infrared (MWIR and LWIR) cameras and focal plane arrays (FPAs) can be solved by using light-concentrating structures. The idea is to reduce the area and, consequently, the thermal noise of photodetectors, while still providing a good collection of photons on photodetector mesas that can help to increase the operating temperature of FPAs. It is shown that this approach can be realized using microconical Si light concentrators with (111) oriented sidewalls, which can be mass-produced by anisotropic wet etching of Si (100) wafers.

View Article and Find Full Text PDF

The algorithmic spectrometry as an alternative to traditional approaches has the potential to become the next generation of infrared (IR) spectral sensing technology, which is free of physical optical filters, and only a very small number of data are required from the IR detector. A key requirement is that the detector spectral responses must be engineered to create an optimal basis that efficiently synthesizes spectral information. Light manipulation through metal perforated with a two-dimensional square array of subwavelength holes provides remarkable opportunities to harness the detector response in a way that is incorporated into the detector.

View Article and Find Full Text PDF

Micro- and nanotextured surfaces with reconfigurable textures can enable advancements in the control of wetting and heat transfer, directed assembly of complex materials, and reconfigurable optics, among many applications. However, reliable and programmable directional shape in large scale is significant for prescribed applications. Herein, we demonstrate the self-directed fabrication and actuation of large-area elastomer micropillar arrays, using magnetic fields to both program a shape-directed actuation response and rapidly and reversibly actuate the arrays.

View Article and Find Full Text PDF

Light-induced phenomena occurring in nature and in synthetic materials are fascinating and have been exploited for technological applications. Here visible-light-induced formation of a helical superstructure is reported, i.e.

View Article and Find Full Text PDF

Guided manipulation of light through periodic nanoarrays of three-dimensional (3D) metal-dielectric patterns provides remarkable opportunities to harness light in a way that cannot be obtained with conventional optics yet its practical implementation remains hindered by a lack of effective methodology. Here we report a novel 3D nanoassembly method that enables deterministic integration of quasi-3D plasmonic nanoarrays with a foreign substrate composed of arbitrary materials and structures. This method is versatile to arrange a variety of types of metal-dielectric composite nanoarrays in lateral and vertical configurations, providing a route to generate heterogeneous material compositions, complex device layouts, and tailored functionalities.

View Article and Find Full Text PDF

Development of light-driven functional materials capable of displaying reversible properties is currently a vibrant frontier from both scientific and technological points of view. Here a new visible-light-driven chiral molecular switch is synthesized and characterized. To the best of our knowledge, this is the first example of a chiral molecular switch in which the visible-light-driven azobenzene motif is directly linked to an axially chiral scaffold through a C-C bond.

View Article and Find Full Text PDF

The ability to control light direction with tailored precision via facile means is long-desired in science and industry. With the advances in optics, a periodic structure called diffraction grating gains prominence and renders a more flexible control over light propagation when compared to prisms. Today, diffraction gratings are common components in wavelength division multiplexing devices, monochromators, lasers, spectrometers, media storage, beam steering, and many other applications.

View Article and Find Full Text PDF

Ultrashort bunches of electrons, emitted from solid surfaces through excitation by ultrashort laser pulses, are an essential ingredient in advanced X-ray sources, and ultrafast electron diffraction and spectroscopy. Multiphoton photoemission using a noble metal as the photocathode material is typically used but more brightness is desired. Artificially structured metal photocathodes have been shown to enhance optical absorption via surface plasmon resonance but such an approach severely reduces the damage threshold in addition to requiring state-of-the-art facilities for photocathode fabrication.

View Article and Find Full Text PDF

We investigate the optical properties and surface-enhanced Raman scattering (SERS) characteristics of metal-coated silica aerogels. Silica aerogels were fabricated by easily scalable sol-gel and supercritical drying processes. Metallic nanogaps were formed on the top surface of the nanoporous silica network by controlling the thickness of the metal layer.

View Article and Find Full Text PDF

We present experimental and theoretical investigations on the polarization properties of a single- and a double-layer gold (Au) grating, serving as a wire grid polarizer. Two layers of Au gratings form a cavity that effectively modulates the transmission and reflection of linearly polarized light. Theoretical calculations based on a transfer matrix method reveals that the double-layer Au grating structure creates an optical cavity exhibiting Fabry-Perot (FP) resonance modes.

View Article and Find Full Text PDF

Liquid crystals (LCs) are omnipresent in living matter, whose chirality is an elegant and distinct feature in certain plant tissues, the cuticles of crabs, beetles, arthropods, and beyond. Taking inspiration from nature, researchers have recently devoted extensive efforts toward developing chiral liquid crystalline materials with self-organized nanostructures and exploring their potential applications in diverse fields ranging from dynamic photonics to energy and safety issues. In this review, an account on the state of the art of emerging chiral liquid crystalline nanostructured materials and their technological applications is provided.

View Article and Find Full Text PDF

Broadband light absorbers are essential components for a variety of applications, including energy harvesting and optoelectronic devices. Thus, the development of a versatile absorbing structure that is applicable in various operating environments is required. In this study, a material-versatile ultrabroadband absorber consisting of metal-coated self-aggregated AlO nanowire bundles with multiscale funnel structures is fabricated.

View Article and Find Full Text PDF

Owing to their dynamic attributes, non-covalent supramolecular interactions have enabled a new paradigm in the design and fabrication of multifunctional material systems with programmable properties, performances, and reconfigurable traits. Recently, the "halogen bond" has become an enticing supramolecular synthetic tool that displays a plethora of promising and advantageous characteristics. Consequently, this versatile and dynamic non-covalent interaction has been extensively harnessed in various fields such as crystal engineering, self-assembly, materials science, polymer chemistry, biochemistry, medicinal chemistry and nanotechnology.

View Article and Find Full Text PDF