Publications by authors named "Augustine Mk Choi"

Article Synopsis
  • AEC2 cells play a crucial role in lipid metabolism for surfactant production, which is vital for lung function.
  • Chronic exposure to cigarette smoke disrupts lipid synthesis in these cells and is connected to the development of COPD.
  • Mice lacking the FASN enzyme in AEC2 cells showed increased lung inflammation and altered surfactant composition, highlighting the enzyme's importance in how the lung responds to smoke exposure.
View Article and Find Full Text PDF

BACKGROUNDMitochondrial dysfunction, a proposed mechanism of chronic obstructive pulmonary disease (COPD) pathogenesis, is associated with the leakage of mitochondrial DNA (mtDNA), which may be detected extracellularly in various bodily fluids. Despite evidence for the increased prevalence of chronic kidney disease in COPD subjects and for mitochondrial dysfunction in the kidneys of murine COPD models, whether urine mtDNA (u-mtDNA) associates with measures of disease severity in COPD is unknown.METHODSCell-free u-mtDNA, defined as copy number of mitochondrially encoded NADH dehydrogenase-1 (MTND1) gene, was measured by quantitative PCR and normalized to urine creatinine in cell-free urine samples from participants in the Subpopulations and Intermediate Outcome Measures in COPD Study (SPIROMICS) cohort.

View Article and Find Full Text PDF

Mitophagy, by maintaining mitochondrial quality control, plays a key role in maintaining kidney function and is impaired in pathologic states. Macrophages are well known for their pathogenic role in kidney fibrosis. Here, we report that PINK1/Parkin-mediated mitophagy in macrophages is compromised in experimental and human kidney fibrosis.

View Article and Find Full Text PDF

The prevalence of obesity is rising worldwide and obese patients comprise a specific population in the intensive care unit. Acute respiratory distress syndrome (ARDS) incidence is increased in obese patients. Exposure of rodents to hyperoxia mimics many of the features of ARDS.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how levels of TRAIL, a protein that induces programmed cell death, are linked to outcomes like in-hospital mortality and organ dysfunction in sepsis patients.
  • It was found that lower TRAIL levels correlate with increased organ dysfunction and higher incidence of septic shock across multiple patient groups.
  • Additionally, lower TRAIL levels were inversely associated with RIPK3, a protein involved in another form of cell death called necroptosis, indicating a complex relationship between these pathways in critically ill patients.
View Article and Find Full Text PDF

Background: Acute respiratory distress syndrome (ARDS) is a prevalent disease with significant mortality for which no effective pharmacologic therapy exists. Low-dose inhaled carbon monoxide (iCO) confers cytoprotection in preclinical models of sepsis and ARDS.

Methods: We conducted a phase I dose escalation trial to assess feasibility and safety of low-dose iCO administration in patients with sepsis-induced ARDS.

View Article and Find Full Text PDF

Chronic obstructive pulmonary disease (COPD), associated with cigarette smoke-induced (CS-induced) emphysema, contributes significantly to the global health care burden of disease. Although chronic kidney disease (CKD) may occur in patients with COPD, the relationship between COPD and CKD remains unclear. Using a murine model of experimental COPD, we show that chronic CS exposure resulted in marked kidney injury and fibrosis, as evidenced by histological and ultrastructural changes, altered macrophage subpopulations, and expression of tissue injury, fibrosis, and oxidative stress markers.

View Article and Find Full Text PDF

Background: Necroptosis is a form of programmed necrotic cell death that is rapidly emerging as an important pathophysiological pathway in numerous disease states. Necroptosis is dependent on receptor-interacting protein kinase 3 (RIPK3), a protein shown to play an important role in experimental models of critical illness. However, there is limited clinical evidence regarding the role of extracellular RIPK3 in human critical illness.

View Article and Find Full Text PDF

In patients requiring ventilator support, mechanical ventilation (MV) may induce acute lung injury (ventilator-induced lung injury [VILI]). VILI is associated with substantial morbidity and mortality in mechanically ventilated patients with and without acute respiratory distress syndrome. At the cellular level, VILI induces necrotic cell death.

View Article and Find Full Text PDF

Renal fibrosis is a common pathogenic response to injury in chronic kidney disease (CKD). The receptor-interacting protein kinase-3 (RIPK3), a regulator of necroptosis, has been implicated in disease pathogenesis. In mice subjected to unilateral ureteral obstruction-induced (UUO-induced) or adenine diet-induced (AD-induced) renal fibrosis, models of progressive kidney fibrosis, we demonstrate increased kidney expression of RIPK3.

View Article and Find Full Text PDF

Background: The extrinsic apoptotic pathway initiates when a death ligand, such as the Fas ligand, interacts with its cell surface receptor (ie., Fas/CD95), forming a death-inducing signaling complex (DISC). The Fas-dependent apoptotic pathway has been implicated in several models of lung or vascular injury.

View Article and Find Full Text PDF

The molecular and cellular mechanisms underlying the pathogenesis of chronic obstructive pulmonary disease (COPD) remain incompletely understood. We have investigated the potential role of macro-autophagy, a cellular homeostatic mechanism, in COPD and cigarette smoke-induced lung-cell injury. Autophagy is a dynamic process for the turnover of organelles and proteins, which regenerates metabolic precursors through the lysosomal-dependent catabolism of cellular macromolecules.

View Article and Find Full Text PDF

Both carbon monoxide (CO) and biliverdin, products of heme degradation by heme oxygenase, have been shown to attenuate ischemia/reperfusion (I/R) injury. We hypothesized in this study that dual-treatment with CO and biliverdin would induce enhanced protective effects against cold I/R injury. Heterotopic heart and orthotopic kidney transplantation were performed in syngeneic Lewis rats after 24-h cold preservation in UW solution.

View Article and Find Full Text PDF