Gene electrotransfer (GET) is non-viral gene delivery technique, also known as electroporation-mediated gene delivery or electrotransfection. GET is a method used to introduce foreign genetic material (such as DNA or RNA) into cells by applying external pulsed electric fields (PEFs) to create temporary pores in the cell membrane. This study was undertaken to examine the impact of buffer composition on the efficiency of GET in mammalian cells Also, we specifically compared the effectiveness of high-frequency nanosecond (ns) pulses with standard microsecond (µs) pulses.
View Article and Find Full Text PDFCalcium electroporation (CaEP) is an innovative approach to treating cancer, involving the internalization of supraphysiological amounts of calcium through electroporation, which leads to cell death. CaEP enables the replacement of chemotherapeutics (e.g.
View Article and Find Full Text PDFBovine colostrum (COL), the first milk secreted by lactating cows postpartum, is a rich source of bioactive compounds that exert a significant role in the survival, growth, and immune development of neonatal calves. This study investigated the immunomodulatory effects of COL on cytokine production in vitro using a Caco-2/THP-1 macrophage co-culture model stimulated with Phorbol 12-myristate 13-acetate (PMA). COL pretreatment significantly reduced IL-6 (241.
View Article and Find Full Text PDFGene delivery by the pulsed electric field is a promising alternative technology for nonviral transfection; however, the application of short pulses (i.e., nanosecond) is extremely limited.
View Article and Find Full Text PDFBovine colostrum (BC) is the first milk produced by lactating cows after parturition. BC is rich in various amino acids, proteins, and fats essential for the nutrition of the neonate calves. Despite the evident beneficial effect of BC on calves, the effect of BC on blood biomarkers is poorly understood.
View Article and Find Full Text PDFObjective: this work focuses on bleomycin electrochemotherapy using new modality of high repetition frequency unipolar nanosecond pulses.
Methods: As a tumor model, Lewis lung carcinoma (LLC1) cell line in C57BL mice (n = 42) was used. Electrochemotherapy was performed with intertumoral injection of bleomycin (50 μL of 1500 IU solution) followed by nanosecond and microsecond range electrical pulse delivery via parallel plate electrodes.
Pulsed electric field (PEF) is frequently used for intertumoral drug delivery resulting in a well-known anticancer treatment-electrochemotherapy. However, electrochemotherapy is associated with microsecond range of electrical pulses, while nanosecond range electrochemotherapy is almost non-existent. In this work, we analyzed the feasibility of nanosecond range pulse bursts for successful doxorubicin-based electrochemotherapy in vivo.
View Article and Find Full Text PDF