The introduction of AlphaFold 2 has spurred a revolution in modelling the structure of proteins and their interactions, enabling a huge range of applications in protein modelling and design. Here we describe our AlphaFold 3 model with a substantially updated diffusion-based architecture that is capable of predicting the joint structure of complexes including proteins, nucleic acids, small molecules, ions and modified residues. The new AlphaFold model demonstrates substantially improved accuracy over many previous specialized tools: far greater accuracy for protein-ligand interactions compared with state-of-the-art docking tools, much higher accuracy for protein-nucleic acid interactions compared with nucleic-acid-specific predictors and substantially higher antibody-antigen prediction accuracy compared with AlphaFold-Multimer v.
View Article and Find Full Text PDFThe AlphaFold Database Protein Structure Database (AlphaFold DB, https://alphafold.ebi.ac.
View Article and Find Full Text PDFModelCIF (github.com/ihmwg/ModelCIF) is a data information framework developed for and by computational structural biologists to enable delivery of Findable, Accessible, Interoperable, and Reusable (FAIR) data to users worldwide. ModelCIF describes the specific set of attributes and metadata associated with macromolecular structures modeled by solely computational methods and provides an extensible data representation for deposition, archiving, and public dissemination of predicted three-dimensional (3D) models of macromolecules.
View Article and Find Full Text PDFWhile scientists can often infer the biological function of proteins from their 3-dimensional quaternary structures, the gap between the number of known protein sequences and their experimentally determined structures keeps increasing. A potential solution to this problem is presented by ever more sophisticated computational protein modeling approaches. While often powerful on their own, most methods have strengths and weaknesses.
View Article and Find Full Text PDFThe AlphaFold Protein Structure Database (AlphaFold DB, https://alphafold.ebi.ac.
View Article and Find Full Text PDFWe describe the operation and improvement of AlphaFold, the system that was entered by the team AlphaFold2 to the "human" category in the 14th Critical Assessment of Protein Structure Prediction (CASP14). The AlphaFold system entered in CASP14 is entirely different to the one entered in CASP13. It used a novel end-to-end deep neural network trained to produce protein structures from amino acid sequence, multiple sequence alignments, and homologous proteins.
View Article and Find Full Text PDFProtein structures can provide invaluable information, both for reasoning about biological processes and for enabling interventions such as structure-based drug development or targeted mutagenesis. After decades of effort, 17% of the total residues in human protein sequences are covered by an experimentally determined structure. Here we markedly expand the structural coverage of the proteome by applying the state-of-the-art machine learning method, AlphaFold, at a scale that covers almost the entire human proteome (98.
View Article and Find Full Text PDFProteins are essential to life, and understanding their structure can facilitate a mechanistic understanding of their function. Through an enormous experimental effort, the structures of around 100,000 unique proteins have been determined, but this represents a small fraction of the billions of known protein sequences. Structural coverage is bottlenecked by the months to years of painstaking effort required to determine a single protein structure.
View Article and Find Full Text PDFProtein structure prediction can be used to determine the three-dimensional shape of a protein from its amino acid sequence. This problem is of fundamental importance as the structure of a protein largely determines its function; however, protein structures can be difficult to determine experimentally. Considerable progress has recently been made by leveraging genetic information.
View Article and Find Full Text PDFWe describe AlphaFold, the protein structure prediction system that was entered by the group A7D in CASP13. Submissions were made by three free-modeling (FM) methods which combine the predictions of three neural networks. All three systems were guided by predictions of distances between pairs of residues produced by a neural network.
View Article and Find Full Text PDF