The interface robustness and spatial arrangement of functional molecules on metallic nanomaterials play a key part in the potential applications of functional nano-objects. The design of mechanically stable and electronically coupled attachments with the underlying metal is essential to bring specific desirable properties to the resulting hybrid materials. In this context, rigid multipodal platforms constitute a unique opportunity for the controllable grafting of functionality.
View Article and Find Full Text PDFThe study of ultrafast photoinduced dynamics of adsorbates on metal surfaces requires thorough investigation of laser-excited electrons and, in many cases, the highly excited surface lattice. While ab initio molecular dynamics with electronic friction and thermostats (, )-AIMDEF addresses such complex modeling, it imposes severe computational costs, hindering quantitative comparison with experimental desorption probabilities. In order to bypass this limitation, we utilize the embedded atom neural network method to construct a potential energy surface (PES) for the coadsorption of CO and O on Ru(0001).
View Article and Find Full Text PDFThe role played by electronic and phononic excitations in the femtosecond laser induced desorption and oxidation of CO coadsorbed with O on Ru(0001) is investigated using molecular dynamics with electronic friction. To this aim, simulations that account for both kind of excitations and that only consider electronic excitations are performed. Results for three different surface coverages are obtained.
View Article and Find Full Text PDFCO oxidation on Ru(0001) is a long-standing example of a reaction that, being thermally forbidden in ultrahigh vacuum, can be activated by femtosecond laser pulses. In spite of its relevance, the precise dynamics of the photoinduced oxidation process as well as the reasons behind the dominant role of the competing CO photodesorption remain unclear. Here we use ab initio molecular dynamics with electronic friction that account for the highly excited and nonequilibrated system created by the laser to investigate both reactions.
View Article and Find Full Text PDF