Nanomaterials (Basel)
June 2022
The authors wish to make following corrections in this paper [...
View Article and Find Full Text PDFTransparent conductive film on a plastic substrate is a critical component in low cost, flexible and lightweight optoelectronics. CVD graphene transferred from copper- to ethylene vinyl acetate (EVA)/polyethylene terephthalate (PET) foil by hot press lamination has been reported as a robust and affordable alternative to manufacture highly flexible and conductive films. Here, we demonstrate that annealing the samples at 60 ∘C under a flow of nitrogen, after wet etching of copper foil by nitric acid, significantly enhances the Hall mobility of such graphene films.
View Article and Find Full Text PDFMicrobial colonization to biomedical surfaces and biofilm formation is one of the key challenges in the medical field. Recalcitrant biofilms on such surfaces cause serious infections which are difficult to treat using antimicrobial agents, due to their complex structure. Early detection of microbial colonization and monitoring of biofilm growth could turn the tide by providing timely guidance for treatment or replacement of biomedical devices.
View Article and Find Full Text PDFSimple estimations show that the thermoelectric readout in graphene radiation detectors can be extremely effective even for graphene with modest charge-carrier mobility ∼ 1000 cm 2 /(Vs). The detector responsivity depends mostly on the residual charge-carrier density and split-gate spacing and can reach competitive values of ∼ 10 3 - 10 4 V/W at room temperature. The optimum characteristics depend on a trade-off between the responsivity and the total device resistance.
View Article and Find Full Text PDFWe use a split top gate to induce doping of opposite signs in different parts of a graphene field-effect transistor, thereby effectively forming a graphene thermocouple. The thermocouple is sensitive to the electronic temperature in graphene, which can be several hundred kelvin higher than the ambient one at sufficiently high bias current. Combined with the high thermoelectric power of graphene, this allows for i) simple measurements of the electronic temperature and ii) building thermoelectric radiation detectors.
View Article and Find Full Text PDFModel photocatalysts composed of TiO2-graphene nanocomposites are prepared to address the effect of graphene quality on their photocatalytic performance. Graphene is synthesized by catalyst-assisted chemical vapor deposition (CVD), catalyst-free CVD and solution processing methods. TiO2 is prepared by reactive magnetron sputtering and subsequent annealing.
View Article and Find Full Text PDFWe demonstrate a combination of micro four-point probe (M4PP) and non-contact terahertz time-domain spectroscopy (THz-TDS) measurements for centimeter scale quantitative mapping of the sheet conductance of large area chemical vapor deposited graphene films. Dual configuration M4PP measurements, demonstrated on graphene for the first time, provide valuable statistical insight into the influence of microscale defects on the conductance, while THz-TDS has potential as a fast, non-contact metrology method for mapping of the spatially averaged nanoscopic conductance on wafer-scale graphene with scan times of less than a minute for a 4-in. wafer.
View Article and Find Full Text PDF