Emission of light fragments at small angles is studied in relativistic heavy ion collisions using the Diogene plastic wall for both symmetrical and non-symmetrical target-projectile systems with 400 MeV per nucleon and 800 MeV per nucleon incident neon nuclei. Efficiency of multiplicity measurements in the small angle range for the selection of central or peripheral collisions is confirmed for asymmetric systems. Differential production cross sections of Z = 1 fragments show evidence for the existence of two emitting sources.
View Article and Find Full Text PDFExperimental results concerning proton production in nuclear collisions, obtained at Saturne with the Diogene 4 pi facility, are compared with the predictions of a thermodynamical model, using collective velocity distributions combined with a statistical thermodynamics in local rest frames. Experimental differential cross sections for alpha + nucleus and Neon + nucleus central collisions at incident energies between 200 and 800 MeV per nucleon are well reproduced by the model, for an angular range 30-110 degrees in the laboratory system. Extracted values of the temperatures are compared with those given by other authors.
View Article and Find Full Text PDFTriple-differential cross sections of charged pions were measured for collisions of Ne projectiles at E/A = 800 MeV with NaF, Nb, and Pb targets. The reaction plane was estimated event by event from the light-baryon momentum distribution. For heavy targets, preferential emission of charged pions away from the interaction zone towards the projectile side was observed in the transverse direction.
View Article and Find Full Text PDFProton-proton small angle correlations have been measured in neon-nucleus collisions, using the 4 pi detector Diogene, at 400 and 800 MeV per nucleon incident energies. Values of the size of the emitting region are obtained by comparison with the Koonin formula, taking into account the biases of the apparatus. The dependence of the density on target mass and incident energy is also analysed.
View Article and Find Full Text PDFMean multiplicities of pi+ and pi- in 4He collisions with C, Cu, and Pb at 200, 600, and 800 MeV/u, and with C and Pb at 400 MeV/u have been measured using the large solid angle detector Diogene. The independence of pion multiplicity on projectile incident energy, target mass and proton multiplicity is studied in comparison with intra-nuclear cascade predictions. The discrepancy between experimental results and theory is pointed out and discussed.
View Article and Find Full Text PDFDiogene, an electronic 4 pi detector, has been built and installed at the Saturne synchrotron in Saclay. The forward angular range (0 degree-6 degrees) is covered by 48 time-of-flight scintillator telescopes that provide charge identification. The trajectories of fragments emitted at larger angles are recorded in a cylindrical 0.
View Article and Find Full Text PDF