Recent advances in nanoscale science and technology provide possibilities to directly self-assemble and integrate functional circuit elements within the wiring scheme of devices with potentially unique architectures. Electroionic resistive switching circuits comprising highly interconnected fractal electrodes and metal-insulator-metal interfaces, known as atomic switch networks, have been fabricated using simple benchtop techniques including solution-phase electroless deposition. These devices are shown to activate through a bias-induced forming step that produces the frequency dependent, nonlinear hysteretic switching expected for gapless-type atomic switches and memristors.
View Article and Find Full Text PDFAtomic switch networks (ASNs) have been shown to generate network level dynamics that resemble those observed in biological neural networks. To facilitate understanding and control of these behaviors, we developed a numerical model based on the synapse-like properties of individual atomic switches and the random nature of the network wiring. We validated the model against various experimental results highlighting the possibility to functionalize the network plasticity and the differences between an atomic switch in isolation and its behaviors in a network.
View Article and Find Full Text PDFEfforts to emulate the formidable information processing capabilities of the brain through neuromorphic engineering have been bolstered by recent progress in the fabrication of nonlinear, nanoscale circuit elements that exhibit synapse-like operational characteristics. However, conventional fabrication techniques are unable to efficiently generate structures with the highly complex interconnectivity found in biological neuronal networks. Here we demonstrate the physical realization of a self-assembled neuromorphic device which implements basic concepts of systems neuroscience through a hardware-based platform comprised of over a billion interconnected atomic-switch inorganic synapses embedded in a complex network of silver nanowires.
View Article and Find Full Text PDFRecent advances in the neuromorphic operation of atomic switches as individual synapse-like devices demonstrate the ability to process information with both short-term and long-term memorization in a single two terminal junction. Here it is shown that atomic switches can be self-assembled within a highly interconnected network of silver nanowires similar in structure to Turing’s “B-Type unorganized machine”, originally proposed as a randomly connected network of NAND logic gates. In these experimental embodiments,complex networks of coupled atomic switches exhibit emergent criticality similar in nature to previously reported electrical activity of biological brains and neuron assemblies.
View Article and Find Full Text PDF