Publications by authors named "Audrey Voisin"

Age-related macular degeneration (AMD) is characterized by visual impairment observed in elderly population. Two forms of the disease are generally described, the atrophic (AMDa) and exudative forms (AMDe). Up until now, no curative treatment is available for this disease.

View Article and Find Full Text PDF

Alteration of the outer retina leads to various diseases such as age-related macular degeneration or retinitis pigmentosa characterized by decreased visual acuity and ultimately blindness. Despite intensive research in the field of retinal disorders, there is currently no curative treatment. Several therapeutic approaches such as cell-based replacement and gene therapies are currently in development.

View Article and Find Full Text PDF

Age-related macular degeneration (AMD) is partially characterized by retinal pigment epithelial (RPE) cell dysfunction. This study focused on phagocytosis activity and its involvement in AMD. Phagocytic activity was analyzed by flow cytometry using porcine photoreceptor outer segment (POS) and fluorescent beads in basal and under oxidative stress condition induced by Fe-NTA in fifteen hiPSC-RPE cell lines (six controls, six atrophic AMD and three exudative AMD).

View Article and Find Full Text PDF

Age-related macular degeneration (AMD) is characterized by retinal pigment epithelial (RPE) cell dysfunction beginning at early stages of the disease. The lack of an appropriate model is a major limitation in understanding the mechanisms leading to the occurrence of AMD. This study compared human-induced pluripotent stem cell- (hiPSC-) RPE cells derived from atrophic AMD patients (77 y/o ± 7) to hiPSC-RPE cells derived from healthy elderly individuals with no drusen or pigmentary alteration (62.

View Article and Find Full Text PDF

The ARPE-19 cell line is currently used as an in vitro model for retinal diseases such as age-related degeneration (AMD). However, several studies have pointed out morphological and genetic differences between ARPE-19 cells and human fetal or adult retinal pigment epithelial (hRPE) cells. This study aims to compare ARPE-19 cells to hRPE cells derived from human induced pluripotent stem cells (hiPSCs) in both normal and oxidative stress conditions induced by Fe-NTA treatment.

View Article and Find Full Text PDF