Publications by authors named "Audrey Schroeder"

Article Synopsis
  • Alternative polyadenylation (APA) produces different transcripts from a single gene by cleaving pre-mRNA at various poly(A) sites, primarily studied in the 3' untranslated region (3'UTR).
  • The study highlights that insufficient CPSF6 leads to changes in protein levels and development issues by affecting APA across the transcript, not just in the 3'UTR.
  • It was found that in humans and zebrafish, CPSF6 insufficiency alters poly(A) site usage, impacting neuronal genes by reducing their expression while enhancing expression of heart and skeletal function genes.
View Article and Find Full Text PDF

Nance-Horan syndrome (NHS) is a rare X-linked dominant disorder caused by mutation in the NHS gene on chromosome Xp22.13. (OMIM 302350).

View Article and Find Full Text PDF

Wiedemann-Steiner syndrome (WSS) is an autosomal dominant disorder caused by monoallelic variants in KMT2A and characterized by intellectual disability and hypertrichosis. We performed a retrospective, multicenter, observational study of 104 individuals with WSS from five continents to characterize the clinical and molecular spectrum of WSS in diverse populations, to identify physical features that may be more prevalent in White versus Black Indigenous People of Color individuals, to delineate genotype-phenotype correlations, to define developmental milestones, to describe the syndrome through adulthood, and to examine clinicians' differential diagnoses. Sixty-nine of the 82 variants (84%) observed in the study were not previously reported in the literature.

View Article and Find Full Text PDF

Pannexin1 (PANX1) is probably best understood as an ATP release channel involved in paracrine signaling. Given its ubiquitous expression, PANX1 pathogenic variants would be expected to lead to disorders involving multiple organ systems. Using whole exome sequencing, we discovered the first patient with a homozygous PANX1 variant (c.

View Article and Find Full Text PDF

Deletions of chromosome 1p36 affect approximately 1 in 5,000 newborns and are associated with developmental delay, intellectual disability, and defects involving the brain, eye, ear, heart, and kidney. Arginine-glutamic acid dipeptide repeats (RERE) is located in the proximal 1p36 critical region. RERE is a widely-expressed nuclear receptor coregulator that positively regulates retinoic acid signaling.

View Article and Find Full Text PDF

Background: Rare de novo mutations have been implicated as a significant cause of idiopathic intellectual disability. Large deletions encompassing 10p11.23 have been implicated in developmental delay, behavioural abnormalities and dysmorphic features, but the genotype-phenotype correlation was not delineated.

View Article and Find Full Text PDF