Background: Since a stroke can impair bimanual activities, enhancing bimanual cooperation through motor skill learning may improve neurorehabilitation. Therefore, robotics and neuromodulation with transcranial direct current stimulation (tDCS) are promising approaches. To date, tDCS has failed to enhance bimanual motor control after stroke possibly because it was not integrating the hypothesis that the undamaged hemisphere becomes the major poststroke hub for bimanual control.
View Article and Find Full Text PDFBackground: It is currently unknown whether motor skill learning (MSkL) with the paretic upper limb is possible during the acute phase after stroke and whether lesion localization impacts MSkL. Here, we investigated MSkL in acute (1-7 days post) stroke patients compared with healthy individuals (HIs) and in relation to voxel-based lesion symptom mapping.
Methods: Twenty patients with acute stroke and 35 HIs were trained over 3 consecutive days on a neurorehabilitation robot measuring speed, accuracy, and movement smoothness variables.
Background: Most activities of daily life (ADL) require cooperative bimanual movements. A unilateral stroke may severely impair bimanual ADL. How patients with stroke (re)learn to coordinate their upper limbs (ULs) is largely unknown.
View Article and Find Full Text PDFUsing robotic devices might improve recovery post-stroke, but the optimal way to apply robotic assistance has yet to be determined. The current study aimed to investigate whether training under the robotic active-assisted mode improves bimanual motor skill learning (biMSkL) more than training under the active mode in stroke patients. Twenty-six healthy individuals (HI) and 23 chronic hemiparetic stroke patients with a detectable lesion on MRI or CT scan, who demonstrated motor deficits in the upper limb, were randomly allocated to two parallel groups.
View Article and Find Full Text PDFRecovery is dynamic during acute stroke, but whether new motor skills can be acquired with the paretic upper limb (UL) during this recovery period is unknown. Clarifying this unknown is important, because neurorehabilitation largely relies on motor learning. The aim was to investigate whether, during acute stroke, patients achieved motor skill learning and retention with the paretic UL.
View Article and Find Full Text PDF. Transcranial direct current stimulation (tDCS) has been suggested to improve poststroke recovery. However, its effects on bimanual motor learning after stroke have not previously been explored.
View Article and Find Full Text PDF