Publications by authors named "Audrey Murray"

Application of transcranial alternating current stimulation (tACS) is thought to modulate ongoing brain oscillations in a frequency-dependent manner. However, recent studies report various and sometimes inconsistent results regarding its capacity to induce changes in cortical activity beyond the stimulation period. Here, thirty healthy volunteers participated in a randomized, cross-over, sham-controlled, double-blind study using EEG to measure the offline effects of tACS on alpha and beta power.

View Article and Find Full Text PDF

This research investigated the removal capacity of polymeric sub-micron ion-exchange resins (SMR) for removal of lead, copper, zinc, and nickel from natural waters in competition with natural organic matter (NOM). Polymeric SMR particles were created and tested to ensure that they were adequately dispersed in the solution. They removed little NOM (10% or less) from river water and wastewater, indicating that competition from NOM was not a major concern.

View Article and Find Full Text PDF

Natural organic matter (NOM), present in natural waters and wastewater, decreases adsorption of micropollutants, increasing treatment costs. This research investigated mechanisms of competition for non-imprinted polymers (NIPs) and activated carbon with humic acid and wastewater. Three different types of activated carbons (Norit PAC 200, Darco KB-M, and Darco S-51) were used for comparison with the NIP.

View Article and Find Full Text PDF

Endocrine disrupting compounds (EDCs) and pharmaceuticals pose a challenge for water and wastewater treatment because they exist at very low concentrations in the presence of substances at much higher concentrations competing for adsorption sites. Sub-micron sized resin particles (approximately 300nm in diameter) (SMR) were tested to evaluate their potential as a treatment for EDCs including: 17-β estradiol (E2), 17-α ethinylestradiol (EE2), estrone (E1), bisphenol A (BPA), and diethylstilbestrol (DES) as well as 12 pharmaceuticals. SMR were able to remove 98% of spiked E2, 80% of EE2, 87% of BPA, and up to 97% of DES from water.

View Article and Find Full Text PDF

This study evaluated the use of particles of molecularly imprinted and non-imprinted polymers (MIP and NIP) as a wastewater treatment method for endocrine disrupting compounds (EDCs). MIP and NIP remove EDCs through adsorption and therefore do not result in the formation of partially degraded products. The results show that both MIP and NIP particles are effective for removal of EDCs, and NIP have the advantage of not being as compound-specific as the MIP and hence can remove a diverse range of compounds including 17-β-estradiol (E2), atrazine, bisphenol A, and diethylstilbestrol.

View Article and Find Full Text PDF

Over the past decade, several studies have reported trace levels of endocrine disrupting compounds, pharmaceuticals, and personal care products in surface waters, drinking water, and wastewater effluents. There has also been an increased concern about the ecological and human health impact of these contaminants, and their removal from water and wastewater has become a priority. Traditional treatment processes are limited in their ability to remove emerging contaminants from water, and there is a need for new technologies that are effective and feasible.

View Article and Find Full Text PDF

Endocrine disrupting compounds and their chlorination by-products are two classes of emerging contaminants. Surface water and wastewater treatment technologies have limitations in removing these contaminants. This study evaluated the ability of non-imprinted polymer particles (NIP) to remove the endocrine disruptor 17beta-estradiol (E2) and its chlorination by-products from water and wastewater.

View Article and Find Full Text PDF

Torque rheometry offers potential for in-line monitoring use, screening polymers, and on site optimization of polymer dose by treatment plant operators. This study investigates the peaks formed following direct polymer injection into sludge during rheological analysis. The peaks enable observation of both flocculation and deflocculation phases, and the highest point of the peaks indicates the point where network bonds rupture.

View Article and Find Full Text PDF

Nuclear receptor coregulator (NRC) is a 250-kDa nuclear protein involved in transcriptional activation of nuclear hormone receptors, nuclear factor-kappaB, c-Jun, c-Fos, and cAMP response element-binding protein. NRC is organized into a modular structure consisting of two activation domains (AD1 and AD2), two nuclear hormone receptor-interacting motifs, LxxLL-1 and LxxLL-2, and a C-terminal regulatory region rich in serines, threonines, and leucines. The LxxLL-1 motif of NRC binds to a broad spectrum of nuclear hormone receptors with high affinity whereas LxxLL-2 interacts with a very limited number of receptors.

View Article and Find Full Text PDF

We previously reported the cloning and characterization of a novel nuclear hormone receptor transcriptional coactivator, which we refer to as NRC. NRC is a 2,063-amino-acid nuclear protein which contains a potent N-terminal activation domain and several C-terminal modules which interact with CBP and ligand-bound nuclear hormone receptors as well as c-Fos and c-Jun. In this study we sought to clone and identify novel factors that interact with NRC to modulate its transcriptional activity.

View Article and Find Full Text PDF