Publications by authors named "Audrey Moudens"

New molecular beam scattering experiments are reported for the water-hydrogen system. Integral cross sections of the first rotational excitations of - and -HO by inelastic collisions with -H were determined by crossing a beam of HO seeded in He with a beam of H. HO and H were cooled in the supersonic expansion down to their lowest rotational levels.

View Article and Find Full Text PDF

We report the results of an experimental study related to the relaxation of the nuclear spin isomers of the water molecule in a supersonic expansion. Rovibrational lines of both ortho and para spin isomers were recorded in the spectral range of HO stretching vibrations at around 3700 cm using FTIR direct absorption. Water vapor seeded in argon, helium, or oxygen or in a mixture of oxygen and argon was expanded into vacuum through a slit nozzle.

View Article and Find Full Text PDF

The rate of the gas-phase N((4)S) + C2N(X(2)Πi) reaction has been measured in a continuous supersonic flow reactor down to 54 K through the relative-rate method using the N((4)S) + OH(X(2)Π) → H((2)S) + NO(X(2)Π) reaction as a reference. The microwave discharge technique was employed to produce high concentrations of atomic nitrogen. Pulsed laser photolysis of precursor molecules Cl3C2N and H2O2 at 212 nm in situ led to C2N and OH radical formation, respectively.

View Article and Find Full Text PDF

At the low temperatures of interstellar dust grains, it is well established that surface chemistry proceeds via diffusive mechanisms of H atoms weakly bound (physisorbed) to the surface. Until recently, however, it was unknown whether atoms heavier than hydrogen could diffuse rapidly enough on interstellar grains to react with other accreted species. In addition, models still require simple reduction as well as oxidation reactions to occur on grains to explain the abundances of various molecules.

View Article and Find Full Text PDF

In the environments where stars and planets form, about one percent of the mass is in the form of micro-meter sized particles known as dust. However small and insignificant these dust grains may seem, they are responsible for the production of the simplest (H(2)) to the most complex (amino-acids) molecules observed in our Universe. Dust particles are recognized as powerful nano-factories that produce chemical species.

View Article and Find Full Text PDF

Carbon monoxide is after H(2) the most abundant molecule identified in the interstellar medium (ISM), and is used as a major tracer for the gas phase physical conditions. Accreted at the surface of water-rich icy grains, CO is considered to be the starting point of a complex organic--presumably prebiotic--chemistry. Non-thermal desorption processes, and especially photodesorption by UV photons, are seen as the main cause that drives the gas-to-ice CO balance in the colder parts of the ISM.

View Article and Find Full Text PDF

A high temperature source has been developed and coupled to a high resolution Fourier transform spectrometer to record emission spectra of acetylene around 3 mum up to 1455 K under Doppler limited resolution (0.015 cm(-1)). The nu(3)-ground state (GS) and nu(2)+nu(4)+nu(5) (Sigma(u) (+) and Delta(u))-GS bands and 76 related hot bands, counting e and f parities separately, are assigned using semiautomatic methods based on a global model to reproduce all related vibration-rotation states.

View Article and Find Full Text PDF