Publications by authors named "Audrey Menegaz Proenca"

Over half of the organic carbon on Earth's surface is trapped in marine sediment as methane hydrates. Ocean warming causes hydrate dissociation and methane leakage to the water column, rendering the characterization of microbes from hydrate depositions a pressing matter. Through genomic, phylogenetic, and biochemical assays, we characterize the first microorganisms isolated from the Rio Grande Cone (Brazil), reservoir responsible for massive methane releases to the water column.

View Article and Find Full Text PDF

Aims: Plastic debris are constantly released into oceans where, due to weathering processes, they suffer fragmentation into micro- and nanoplastics. Diverse microbes often colonize these persisting fragments, contributing to their degradation. However, there are scarce reports regarding the biofilm formation of eukaryotic decomposing microorganisms on plastics.

View Article and Find Full Text PDF

Environmental pollution by plastic debris is estimated on a scale of 100 million metric tons, a portion of which is fragmented into micro- and nanoplastics. These fragments are often colonized by bacterial species in marine environments, possibly contributing to the biodegradation of such materials. However, further investigations are necessary to determine the impact of abiotic polymer weathering on biofilm adhesion, as well as the specific biofilm formation strategies employed by marine isolates.

View Article and Find Full Text PDF

Gene expression and growth rate are highly stochastic in . Some of the growth rate variations result from the deterministic and asymmetric partitioning of damage by the mother to its daughters. One daughter, denoted the old daughter, receives more damage, grows more slowly and ages.

View Article and Find Full Text PDF

Cellular aging, a progressive functional decline driven by damage accumulation, often culminates in the mortality of a cell lineage. Certain lineages, however, are able to sustain long-lasting immortality, as prominently exemplified by stem cells. Here, we show that Escherichia coli cell lineages exhibit comparable patterns of mortality and immortality.

View Article and Find Full Text PDF

Non-genetic phenotypic variation is common in biological organisms. The variation is potentially beneficial if the environment is changing. If the benefit is large, selection can favor the evolution of genetic assimilation, the process by which the expression of a trait is transferred from environmental to genetic control.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session67hj75r6cnc384lq9cc66uvo8c06hn5p): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once