Publications by authors named "Audrey Langlois"

Lactase (LCT) deficiency affects approximately 75% of the world's adult population and may lead to lactose malabsorption and intolerance. Currently, the regulation of LCT gene expression remains poorly known. Peroxisome proliferator activator receptorγ (PPARγ) is a key player in carbohydrate metabolism.

View Article and Find Full Text PDF

The etiology of inflammatory bowel diseases remains largely unknown. We previously demonstrated that the expression of the peroxisome proliferator activated receptor-gamma (PPARγ) is downregulated in colonic epithelial cells of patients with ulcerative colitis (UC). PPARγ is a nuclear receptor that modulates inflammation.

View Article and Find Full Text PDF

Background And Aims: Immune tolerance breakdown during UC involves the peroxisome proliferator-activated receptor-γ (PPARγ), a key factor in mucosal homoeostasis and the therapeutic target of 5-aminosalycilates, which expression is impaired during UC. Here we assess the impact of glucocorticoids (GCs) on PPARγ expression, focusing especially on extra-adrenal cortisol production by colonic epithelial cells (CECs).

Methods: Activation of PPARγ in the colon was evaluated using transgenic mice for the luciferase gene under PPAR control (peroxisome proliferator response element-luciferase mice).

View Article and Find Full Text PDF

Epidemiological evidences suggested that 5-aminosalicylic acid (5-ASA) therapy may prevent the development of colorectal cancer in inflammatory bowel disease patients. Our aim is to investigate whether peroxisome proliferator-activated receptor-γ (PPARγ) mediates the antineoplastic effects of 5-ASA. HT-29 and Caco-2 cells were treated by 5-ASA, rosiglitazone (PPARγ ligand) or etoposide (anticarcinogenic drug).

View Article and Find Full Text PDF

Cigarette smoke (CS) protects against intestinal inflammation during ulcerative colitis. Immunoregulatory mechanisms sustaining this effect remain unknown. The aim of this study was to assess the effects of CS on experimental colitis and to characterize the intestinal inflammatory response at the cellular and molecular levels.

View Article and Find Full Text PDF

Obese patients have chronic, low-grade inflammation that predisposes to type 2 diabetes and results, in part, from dysregulated visceral white adipose tissue (WAT) functions. The specific signaling pathways underlying WAT dysregulation, however, remain unclear. Here we report that the PPARgamma signaling pathway operates differently in the visceral WAT of lean and obese mice.

View Article and Find Full Text PDF