Background: Mesenchymal stromal cells (MSC) have immunomodulatory and hematopoiesis-supporting properties that could potentially benefit hematopoietic stem cell (HSC) engraftment and decrease the incidence and/or severity of graft-versus-host disease (GVHD).
Methods: Based on our previous pilot study, we established a multicenter, prospective, randomized, double-blind trial evaluating the efficacy of co-infusing third-party MSC (1.5-3 × 10/kg) versus placebo on the day of HSC transplantation (HCT) to prevent GVHD in recipients of HLA-mismatched unrelated donors after reduced-intensity conditioning.
Barttin is an accessory subunit that modifies protein stability, subcellular distribution, and voltage-dependent gating of ClC-K chloride channels expressed in renal and inner ear epithelia. ClC-K channels are double-barreled channels with two identical protopores that may be opened by individual or common gating processes. Using heterologous expression in mammalian cells and patch-clamp recordings, we studied the effects of barttin on gating of rat ClC-K1 and human ClC-Ka.
View Article and Find Full Text PDFBSND encodes barttin, an accessory subunit of renal and inner ear chloride channels. To date, all mutations of BSND have been shown to cause Bartter syndrome type IV, characterized by significant renal abnormalities and deafness. We identified a BSND mutation (p.
View Article and Find Full Text PDFBartter syndrome type IV is an inherited human condition characterized by severe renal salt wasting and sensorineural deafness. The causal gene, BSND, encodes barttin, an accessory subunit of chloride channels located in the kidney and inner ear. Barttin modulates the stability, cell surface localization, and function of ClC-K channels; distinct mutations cause phenotypes of varying severity.
View Article and Find Full Text PDFBarttin is an accessory subunit of a subgroup of ClC-type chloride channels expressed in renal and inner ear epithelia. In this study, we examined the effects of barttin on two ClC-K channel isoforms, rat ClC-K1 and human ClC-Kb, using heterologous expression, patch clamping, confocal imaging, and flow cytometry. In the absence of barttin, only a small percentage of rClC-K1 and hClC-Kb channels are inserted into the plasma membrane.
View Article and Find Full Text PDF