CRISPR-Cas9 system has emerged as a revolutionary gene-editing tool with huge therapeutic potential for addressing the underlying genetic causes of various diseases, including cancer. However, there are challenges such as the delivery method that must be overcome for its clinical application. In addition to the risk of nuclease degradation and rapid clearance of the CRISPR-Cas9 system by macrophages, the large size of Cas9, the high anionic charge density and hydrophilic nature of the RNA hinder their intracellular delivery and overall gene transfection efficiency.
View Article and Find Full Text PDF