Intensification of livestock systems becomes essential to meet the food demand of the growing world population, but it is important to consider the environmental impact of these systems. To assess the potential of forage-based livestock systems to offset greenhouse gas (GHG) emissions, the net carbon (C) balance of four systems in the Brazilian Amazon Biome was estimated: livestock (L) with a monoculture of Marandu palisade grass [Brachiaria brizantha (Hochst. ex A.
View Article and Find Full Text PDFWith global climate changes currently occurring, and particularly given the severe energy and food shortages occurring throughout tropical regions, agroecological (AE) systems are drawing renewed attention as an efficient alternative to intensive models of production, particularly unsuitable in regions of the world such as the Caribbean or Latin America. There is a pressing need to focus on livestock farming systems (LFS) and characterize their potential contributions to global sustainability. A multidisciplinary approach is needed to address these multiple and complex problems.
View Article and Find Full Text PDFTrop Anim Health Prod
August 2012
Using a mechanistic model, we compared five alternative farming systems with the purpose of transforming monoculture (MON) banana farms into mixed farming systems (MFS) with ruminants feeding banana by-products (leaves, pseudostems and nonmarketable fruits) and forage from the fallow land. The paper presents the main structure of the model (land surface changes, available biomass for animals, stocking rates, productive or reproductive indicators), and impact assessment (change in farm productivity) is discussed. Five MFS with typical local ruminant production systems were used to compare MON to the strategies using forage from fallow and/or integrating Creole cattle (CC), Creole goats (CG) or Martinik sheep (MS) into banana farming.
View Article and Find Full Text PDF