The dorsal striatum (DS) is implicated in behavioral and neural processes including action control and reinforcement. Alcohol alters these processes in rodents, and it is believed that the development of alcohol use disorder involves changes in DS dopamine signaling. In nonhuman primates, the DS can be divided into caudate and putamen subregions.
View Article and Find Full Text PDFThe ability of stress to trigger cocaine seeking in humans and rodents is variable and is determined by the amount and pattern of prior drug use. This study examined the role of a corticotropin releasing factor (CRF)-regulated dopaminergic projection from the ventral tegmental area (VTA) to the prelimbic cortex in shock-induced cocaine seeking and its recruitment under self-administration conditions that establish relapse vulnerability. Male rats with a history of daily long-access (LgA; 14 × 6 h/d) but not short-access (ShA; 14 × 2 h/d) self-administration showed robust shock-induced cocaine seeking.
View Article and Find Full Text PDFMaternal behavior and anxiety are potently modulated by the brain corticotropin-releasing factor (CRF) system postpartum. Downregulation of CRF in limbic brain regions is essential for appropriate maternal behavior and an adaptive anxiety response. Here, we focus our attention on arguably the most important brain region for maternal behavior, the hypothalamic medial preoptic area (MPOA).
View Article and Find Full Text PDFCorticotropin-releasing hormone-binding protein (CRH-BP) is a secreted glycoprotein that binds CRH with very high affinity to modulate CRH receptor activity. CRH-BP is widely expressed throughout the brain, with particularly high expression in regions such as the amygdala, hippocampus, ventral tegmental area and prefrontal cortex (PFC). Recent studies suggest a role for CRH-BP in stress-related psychiatric disorders and addiction, with the PFC being a potential site of interest.
View Article and Find Full Text PDFCorticotropin-releasing hormone (CRH) is a key regulator of the stress response. This peptide controls the hypothalamic-pituitary-adrenal (HPA) axis as well as a variety of behavioral and autonomic stress responses via the two CRH receptors, CRH-R1 and CRH-R2. The CRH system also includes an evolutionarily conserved CRH-binding protein (CRH-BP), a secreted glycoprotein that binds CRH with subnanomolar affinity to modulate CRH receptor activity.
View Article and Find Full Text PDFBackground: Dysregulation of the corticotropin-releasing factor (CRF) system has been observed in rodent models of binge drinking, with a large focus on CRF receptor 1 (CRF-R1). The role of CRF-binding protein (CRF-BP), a key regulator of CRF activity, in binge drinking is less well understood. In humans, single-nucleotide polymorphisms in CRHBP are associated with alcohol use disorder and stress-induced alcohol craving, suggesting a role for CRF-BP in vulnerability to alcohol addiction.
View Article and Find Full Text PDFReduced corticotropin-releasing factor (CRF) receptor activation in the postpartum period is essential for adequate maternal behavior. One of the factors contributing to this hypo-activity might be the CRF-binding protein (CRF-BP), which likely reduces the availability of free extracellular CRF/urocortin 1. Here, we investigated behavioral effects of acute CRF-BP inhibition using 5μg of CRF(6-33) administered either centrally or locally within different parts of the bed nucleus of the stria terminalis (BNST) in lactating rats.
View Article and Find Full Text PDFAlcohol Clin Exp Res
December 2015
The CRH-binding protein (CRH-BP) binds CRH with very high affinity and inhibits CRH-mediated ACTH release from anterior pituitary cells in vitro, suggesting that the CRH-BP functions as a negative regulator of CRH activity. Our previous studies have demonstrated sexually dimorphic expression of CRH-BP in the murine pituitary. Basal CRH-BP expression is higher in the female pituitary, where CRH-BP mRNA is detected in multiple anterior pituitary cell types.
View Article and Find Full Text PDFIt is well-known that stress can significantly impact learning; however, whether this effect facilitates or impairs the resultant memory depends on the characteristics of the stressor. Investigation of these dynamics can be confounded by the role of the stressor in motivating performance in a task. Positing a cohesive model of the effect of stress on learning and memory necessitates elucidating the consequences of stressful stimuli independently from task-specific functions.
View Article and Find Full Text PDFApproximately 50% of mood disorder patients exhibit hypercortisolism. Cortisol normally exerts its functions in the CNS via binding to mineralocorticoid receptors (MR) and glucocorticoid receptors (GR). Both MR and GR are highly expressed in human hippocampus and several studies have suggested that alterations in the levels of MR or GR within this region may contribute to the dysregulation in major depressive disorder (MDD).
View Article and Find Full Text PDFLeptin acts on leptin receptor (LepRb)-expressing neurons throughout the brain, but the roles for many populations of LepRb neurons in modulating energy balance and behavior remain unclear. We found that the majority of LepRb neurons in the lateral hypothalamic area (LHA) contain neurotensin (Nts). To investigate the physiologic role for leptin action via these LepRb(Nts) neurons, we generated mice null for LepRb specifically in Nts neurons (Nts-LepRbKO mice).
View Article and Find Full Text PDFBackground: Genetic factors and early-life adversity are critical in the etiology of mood disorders and substance abuse. Because of their role in the transduction of stress responses, glucocorticoid hormones and their receptors could serve as both genetic factors and mediators of environmental influences. We have shown that constitutive overexpression of the glucocorticoid receptor (GR) in forebrain results in increased emotional reactivity and lability in mice.
View Article and Find Full Text PDFCRH directs the physiological and behavioral responses to stress. Its activity is mediated by CRH receptors (CRH-R) 1 and 2 and modulated by the CRH-binding protein. Aberrant regulation of this system has been associated with anxiety disorders and major depression, demonstrating the importance of understanding the regulation of CRH activity.
View Article and Find Full Text PDFCorticotropin-releasing hormone (CRH) is a key regulator of the mammalian stress response, mediating a wide variety of stress-associated behaviors including stress-induced inhibition of reproductive function. To investigate the potential direct action of CRH on pituitary gonadotrope function, we examined CRH receptor expression and second messenger signaling in alpha T3-1 cells, a murine gonadotrope-like cell line. Reverse transcriptase PCR (RT-PCR) studies demonstrated that alpha T3-1 cells express mRNA for the two CRH receptor subtypes, CRHR1 and CRHR2, with CRHR2alpha as the predominant CRHR2 isoform.
View Article and Find Full Text PDFThe CRH family of ligands signals via two distinct receptors, CRH-R1 and CRH-R2. Previous studies localized CRH-R1 and CRH-R2 to a subset of anterior pituitary corticotropes and gonadotropes, respectively. However, numerous studies have indicated that stress and CRH activity can alter the secretion of multiple anterior pituitary hormones, suggesting a broader expression of the CRH receptors in pituitary.
View Article and Find Full Text PDFRepeated stress enhances vulnerability to neural dysfunction that is cumulative over the course of the lifespan. This dysfunction contributes to cognitive deficits observed during aging. In addition, aging is associated with dysregulation of the limbic-hypothalamic-pituitary-adrenal (LHPA) axis, leading to a delayed termination of the stress response.
View Article and Find Full Text PDFAlthough numerous stress-related molecules have been implicated in vulnerability to psychiatric illness, especially major depression and anxiety disorders, the role of the brain mineralocorticoid receptor (MR) in stress, depression, and affective function is not well defined. MR is a steroid hormone receptor that detects circulating glucocorticoids with high affinity and has been primarily implicated in controlling their basal level and circadian rhythm. To specifically address the role of MR in hypothalamic-pituitary-adrenal axis activity and anxiety-related behaviors, we generated transgenic mice with increased levels of MR in the forebrain (MRov mice) by using the forebrain-specific calcium/calmodulin-dependent protein kinase II alpha promoter to direct expression of MR cDNA.
View Article and Find Full Text PDFCorticotropin Releasing Hormone-Binding Protein (CRH-BP), a 37 kDa secreted glycoprotein, binds both CRH and urocortin with high affinity and is structurally unrelated to the CRH receptors. CRH-BP orthologues have been identified in multiple invertebrate and vertebrate species. It is strongly conserved throughout evolution, suggesting the maintenance of a structural conformation necessary for biological activity.
View Article and Find Full Text PDFUpon metamorphosis, amphibian tadpoles lose their tails through programmed cell death induced by thyroid hormone (T3). Before transformation, the tail functions as an essential locomotory organ. The binding protein for the stress neuropeptide corticotropin-releasing factor (CRF; CRF-BP) is strongly up-regulated in the tail of Xenopus tadpoles during spontaneous or T3-induced metamorphosis.
View Article and Find Full Text PDFCRH-binding protein (CRH-BP) binds CRH with high affinity and inhibits CRH-mediated ACTH release from anterior pituitary corticotrope-like cells in vitro. In female mouse pituitary, CRH-BP is localized not only in corticotropes, but is also expressed in gonadotropes and lactotropes. To investigate the functional significance of gonadotrope CRH-BP, we examined the molecular mechanisms underlying GnRH-regulated CRH-BP expression in alphaT3-1 gonadotrope-like cells.
View Article and Find Full Text PDFMutations in Prophet of PIT1 (Prop1), one of several homeodomain transcription factors that are required for the development of the anterior pituitary gland, are the predominant cause of MPHD (multiple pituitary hormone deficiency) in humans. We show that deletion of Prop1 in mice causes severe pituitary hypoplasia with failure of the entire Pit1 lineage and delayed gonadotrope development. The pituitary hormone deficiencies cause secondary endocrine problems and a high rate of perinatal mortality due to respiratory distress.
View Article and Find Full Text PDFMol Endocrinol
December 2004
CRH-binding protein (CRH-BP) regulates activation of the hypothalamic-pituitary-adrenal (HPA) axis by binding and inhibiting CRH. We investigated for the first time transcriptional regulation of the human CRH-BP promoter using transient transfections. Estrogen receptors (ERs) contributed to ligand-independent constitutive activation of the promoter, whereas in the presence of estradiol ERalpha induced and ERbeta repressed promoter activity in a dose-dependent manner.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2004
The molecular mechanisms that control the range and stability of emotions are unknown, yet this knowledge is critical for understanding mood disorders, especially bipolar illness. Here, we show that the glucocorticoid receptor (GR) modulates these features of emotional responsiveness. We generated transgenic mice overexpressing GR specifically in forebrain.
View Article and Find Full Text PDF