Hypertension remains a leading cause of cardiovascular and kidney diseases. Failure to control blood pressure with ≥ 3 medications or control requiring ≥ 4 medications is classified as resistant hypertension (rHTN) and new therapies are needed to reduce the resulting increased risk of morbidity and mortality. Here, we report genetic evidence that relaxin family peptide receptor 2 (RXFP2) is associated with rHTN in men, but not in women.
View Article and Find Full Text PDFNat Commun
January 2024
Associations between human genetic variation and clinical phenotypes have become a foundation of biomedical research. Most repositories of these data seek to be disease-agnostic and therefore lack disease-focused views. The Type 2 Diabetes Knowledge Portal (T2DKP) is a public resource of genetic datasets and genomic annotations dedicated to type 2 diabetes (T2D) and related traits.
View Article and Find Full Text PDFKidney Int
September 2022
Commun Biol
June 2022
As nanocrystals (NCs) gain maturity, they become central building blocks for optoelectronics in devices such as solar cells and, more recently, infrared focal plane arrays. Now that the proof of concept of these devices has been established, their optimization requires a deeper understanding of their electronic and optical features to engineer their optoelectronic properties accurately. Though PbS NCs have been extensively investigated, the complex optical index of PbS NC thin films remains mostly unknown.
View Article and Find Full Text PDFDietary intake is a major contributor to the global obesity epidemic and represents a complex behavioural phenotype that is partially affected by innate biological differences. Here, we present a multivariate genome-wide association analysis of overall variation in dietary intake to account for the correlation between dietary carbohydrate, fat and protein in 282,271 participants of European ancestry from the UK Biobank (n = 191,157) and Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium (n = 91,114), and identify 26 distinct genome-wide significant loci. Dietary intake signals map exclusively to specific brain regions and are enriched for genes expressed in specialized subtypes of GABAergic, dopaminergic and glutamatergic neurons.
View Article and Find Full Text PDFNanocrystals (NCs) have gained considerable attention for their broadly tunable absorption from the UV to the THz range. Nevertheless, their optical features suffer from a lack of tunability once integrated into optoelectronic devices. Here, we show that bias tunable aspectral response is obtained by coupling a HgTe NC array with a plasmonic resonator.
View Article and Find Full Text PDFHgTe nanocrystals (NCs) enable broadly tunable infrared absorption, now commonly used to design light sensors. This material tends to grow under multipodic shapes and does not present well-defined size distributions. Such point generates traps and reduces the particle packing, leading to a reduced mobility.
View Article and Find Full Text PDFNarrow band gap nanocrystals offer an interesting platform for alternative design of low-cost infrared sensors. It has been demonstrated that transport in HgTe nanocrystal arrays occurs between strongly-coupled islands of nanocrystals in which charges are partly delocalized. This, combined with the scaling of the noise with the active volume of the film, make case for device size reduction.
View Article and Find Full Text PDFNanocrystals (NCs) are one of the few nanotechnologies to have attained mass market applications with their use as light sources for displays. This success relies on Cd- and In-based wide bandgap materials. NCs are likely to be employed in more applications as they provide a versatile platform for optoelectronics, specifically, infrared optoelectronics.
View Article and Find Full Text PDFMercury telluride (HgTe) nanocrystals are among the most versatile infrared (IR) materials with the absorption of lowest energy optical absorption which can be tuned from the visible to the terahertz range. Therefore, they have been extensively considered as near IR emitters and as absorbers for low-cost IR detectors. However, the electroluminescence of HgTe remains poorly investigated despite its ability to go toward longer wavelengths compared to traditional lead sulfide (PbS).
View Article and Find Full Text PDFNow that colloidal nanocrystals (NCs) have been integrated as green and red sources for liquid crystal displays, the next challenge for quantum dots is their use in electrically driven light-emitting diodes (LEDs). Among various colloidal NCs, nanoplatelets (NPLs) have appeared as promising candidates for light-emitting devices because their two-dimensional shape allows a narrow luminescence spectrum, directional emission, and high light extraction. To reach high quantum efficiency, it is critical to grow core/shell structures.
View Article and Find Full Text PDFTo date, defect-tolerance electronic structure of lead halide perovskite nanocrystals is limited to an optical feature in the visible range. Here, we demonstrate that IR sensitization of formamidinium lead iodine (FAPI) nanocrystal array can be obtained by its doping with PbS nanocrystals. In this hybrid array, absorption comes from the PbS nanocrystals while transport is driven by the perovskite which reduces the dark current compared to pristine PbS.
View Article and Find Full Text PDFNanocrystals are promising building blocks for the development of low-cost infrared optoelectronics. Gating a nanocrystal film in a phototransistor geometry is commonly proposed as a strategy to tune the signal-to-noise ratio by carefully controlling the carrier density within the semiconductor. However, the performance improvement has so far been quite marginal.
View Article and Find Full Text PDFElevated serum urate levels cause gout and correlate with cardiometabolic diseases via poorly understood mechanisms. We performed a trans-ancestry genome-wide association study of serum urate in 457,690 individuals, identifying 183 loci (147 previously unknown) that improve the prediction of gout in an independent cohort of 334,880 individuals. Serum urate showed significant genetic correlations with many cardiometabolic traits, with genetic causality analyses supporting a substantial role for pleiotropy.
View Article and Find Full Text PDF