Publications by authors named "Audrey Castet"

The nuclear receptor superfamily comprises ligand-regulated transcription factors that control various developmental and physiological pathways. These receptors share a common modular structure and regulate gene expression through the recruitment of a large set of coregulatory proteins. These transcription cofactors regulate, either positively or negatively, chromatin structure and transcription initiation.

View Article and Find Full Text PDF

Receptor interacting protein (RIP) 140 is a negative transcriptional regulator of nuclear hormone receptors which is required for the maintenance of energy homeostasis and ovulation. Despite its recruitment by agonist-liganded receptors, this protein exhibits a strong repressive activity which was initially attributed to competition with coactivator binding on nuclear receptors. However, RIP140 also exerts active repression implicating the Carboxyl-terminal binding proteins (CtBPs) and histone deacetylases (HDACs).

View Article and Find Full Text PDF

The androgen receptor (AR) is a ligand-activated transcription factor that controls growth and survival of prostate cancer cells. In the present study, we investigated the regulation of AR activity by the receptor-interacting protein 140 (RIP140). We first showed that RIP140 could be coimmunoprecipitated with the receptor when coexpressed in 293T cells.

View Article and Find Full Text PDF

We have investigated the effects of receptor-interacting protein 140 (RIP140) on transcriptional regulation by estrogen receptor-related receptors (ERRs). We first show that RIP140 inhibits transactivation by ERRalpha, beta, and gamma on natural or artificial reporter genes containing different types of response elements. This repression correlates with a strong in vitro binding between several regions of RIP140 and the three ERR isoforms.

View Article and Find Full Text PDF

Estrogen receptor (ER) function is mediated by multi-domain co-regulator proteins. A fluorescently labelled fragment of the human PGC-1alpha co-regulator (residues 91-408) bearing the two motifs most strongly implicated in interactions with nuclear receptors (NR box2 and NR box3), was used to characterize in vitro binding of PGC-1alpha to ER. Anisotropy measurements revealed that the affinity of this PGC-1alpha fragment for human ERalpha and beta was fairly strong in the presence of estradiol (approximately 5 nM), and that unlike a similar fragment of SRC-1 (570-780), PGC-191-408 exhibited ligand-independent interactions with ER, particularly with ERbeta (Kd approximately 30 nM).

View Article and Find Full Text PDF

Nuclear hormone receptors belong to a superfamily of ligand-activated transcription factors which regulate fundamental physiological processes. Their activity is controlled by a large number of coregulatory proteins which are, in most cases, recruited by nuclear receptors in the presence of ligand. RIP140 (receptor interacting protein of 140 kDa) was one of the first transcription cofactors to be identified almost ten years ago.

View Article and Find Full Text PDF

Estrogens are steroid hormones, which act through specific nuclear estrogen receptors (ERalpha and ERbeta) and are important regulators of breast cancer growth. These receptors control gene expression by recruiting transcriptional cofactors that exhibit various enzymatic activities such as histone acetyltransferase or histone deacetylase (HDAC) which target histone as well as non-histone substrates. The ERalpha itself and some of the transcriptional regulators have been shown to be acetylated proteins.

View Article and Find Full Text PDF

In this study, we have investigated the role of C-terminal binding proteins (CtBPs) and histone deacetylases (HDACs) in the repressive activity of the nuclear receptor cofactor Receptor-Interacting Protein 140 (RIP140). We have defined the interaction of both CtBP1 and CtBP2 with RIP140 and delineated two motifs (PIDLS and PINLS) differentially required for in vitro interaction. Using different approaches (titration of endogenous CtBPs, mutagenesis and transfection in CtBP knock-out cells), we find that recruitment of CtBPs only partially explains the negative regulation exerted by RIP140.

View Article and Find Full Text PDF

Many hormones exert their effects through specific nuclear receptors which belong to a superfamily of ligand-activated transcription factors. These receptors control target gene expression through the recruitment of different cofactors acting as transcription activation or repression mediators, generally as parts of multiprotein complexes. The importance and the role in physiopathology of these different cofactors only begin to be defined.

View Article and Find Full Text PDF