Publications by authors named "Audrey Bienfait"

Cavity quantum electrodynamics (QED) uses a cavity to engineer the mode structure of the vacuum electromagnetic field such as to enhance the interaction between light and matter. Exploiting these ideas in solid-state systems has lead to circuit QED which has emerged as a valuable tool to explore the rich physics of quantum optics and as a platform for quantum computation. Here we introduce a simple approach to further engineer the light-matter interaction in a driven cavity by controllably decoupling a qubit from the cavity's photon population, effectively cloaking the qubit from the cavity.

View Article and Find Full Text PDF

High-fidelity quantum entanglement is a key resource for quantum communication and distributed quantum computing, enabling quantum state teleportation, dense coding, and quantum encryption. Any sources of decoherence in the communication channel, however, degrade entanglement fidelity, thereby increasing the error rates of entangled state protocols. Entanglement purification provides a method to alleviate these nonidealities by distilling impure states into higher-fidelity entangled states.

View Article and Find Full Text PDF

The generation of high-fidelity distributed multi-qubit entanglement is a challenging task for large-scale quantum communication and computational networks. The deterministic entanglement of two remote qubits has recently been demonstrated with both photons and phonons. However, the deterministic generation and transmission of multi-qubit entanglement has not been demonstrated, primarily owing to limited state-transfer fidelities.

View Article and Find Full Text PDF