The Coronavirus Disease 2019 (COVID-19), caused by virus SARS-CoV-2, is characterized by massive inflammation and immune system imbalance. Despite the implementation of vaccination protocols, the accessibility of treatment remains uneven. Furthermore, the persistent threat of new variants underscores the urgent need for expanded research into therapeutic options for SARS-CoV-2.
View Article and Find Full Text PDFAlthough the roles of embryonic yolk sac-derived, resident microglia in neurodevelopment were extensively studied, the possible involvement of bone marrow-derived cells remains elusive. In this work, we used a fate-mapping strategy to selectively label bone marrow-derived cells and their progeny in the brain (FLT3IBA1). FLT3IBA1 cells were confirmed to be transiently present in the healthy brain during early postnatal development.
View Article and Find Full Text PDFMegakaryocytes are commonly known as large, polyploid, bone marrow resident cells that contribute to hemostasis through the production of platelets. Soon after their discovery in the 19th century, megakaryocytes were described in tissue locations other than the bone marrow, specifically in the lungs and the blood circulation. However, the localization of megakaryocytes in the lungs and the contribution of lung megakaryocytes to the general platelet pool has only recently been appreciated.
View Article and Find Full Text PDFImmune complexes form in systemic disorders such as rheumatological, autoimmune, and allergic diseases or in response to infections or medications. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) adenoviral vector vaccines have been associated with rare yet serious thrombotic complications in the brain due to the formation of immune complexes that activate platelets. There are currently no data visualizing the interplay of platelets with leukocytes and the brain vasculature endothelium in response to immune complexes.
View Article and Find Full Text PDFIn addition to their hemostatic role, platelets play a significant role in immunity. Once activated, platelets release extracellular vesicles (EVs) formed by the budding of their cytoplasmic membranes. Because of their heterogeneity, platelet EVs (PEVs) are thought to perform diverse functions.
View Article and Find Full Text PDFThe accumulation of DNA and nuclear components in blood and their recognition by autoantibodies play a central role in the pathophysiology of systemic lupus erythematosus (SLE). Despite the efforts, the sources of circulating autoantigens in SLE are still unclear. Here, we show that in SLE, platelets release mitochondrial DNA, the majority of which is associated with the extracellular mitochondrial organelle.
View Article and Find Full Text PDFSystemic lupus erythematosus (SLE) is an autoimmune inflammatory disease characterized by deposits of immune complexes (ICs) in organs and tissues. The expression of FcγRIIA by human platelets, which is their unique receptor for immunoglobulin G antibodies, positions them to ideally respond to circulating ICs. Whereas chronic platelet activation and thrombosis are well-recognized features of human SLE, the exact mechanisms underlying platelet activation in SLE remain unknown.
View Article and Find Full Text PDFDuring inflammation, steady-state hematopoiesis switches to emergency hematopoiesis to repopulate myeloid cells, with a bias toward the megakaryocytic lineage. Soluble inflammatory cues are thought to be largely responsible for these alterations. However, how these plasma factors rapidly alter the bone marrow (BM) is not understood.
View Article and Find Full Text PDFThe immune system is comprised of two principal interconnected components called innate and adaptive immunity. While the innate immune system mounts a nonspecific response that provides protection against the spread of foreign pathogens, the adaptive immune system has developed to specifically recognize a given pathogen and lead to immunological memory. Platelets are small fragments produced from megakaryocytes in bone marrow and lungs.
View Article and Find Full Text PDFBackground: Whereas platelet transfusion is a common medical procedure, inflammation still occurs in a fraction of transfused individuals despite the absence of any apparent infectious agents. Platelets can shed membrane vesicles, called extracellular vesicles (EVs), some of which contain mitochondria (mito+EV). With its content of damage-associated molecular pattern (DAMP), the mitochondrion can stimulate the innate immune system.
View Article and Find Full Text PDF