Publications by authors named "Audra J DeStefano"

While the conformational ensembles of disordered peptides and peptidomimetics are complex and challenging to characterize, they are a critical component in the paradigm connecting macromolecule sequence, structure, and function. In molecules that do not adopt a single predominant conformation, the conformational ensemble contains rich structural information that, if accessible, can provide a fundamental understanding related to desirable functions such as cell penetration of a therapeutic or the generation of tunable enzyme-mimetic architecture. To address the fundamental challenge of describing broad conformational ensembles, we developed a model system of peptidomimetics comprised of polar glycine and hydrophobic -butylglycine to characterize using a suite of analytical techniques.

View Article and Find Full Text PDF
Article Synopsis
  • The paper critiques the common assumption that polymer chains follow a Gaussian configuration, noting that this assumption often fails for polymers with complex structures or during deformation.
  • It introduces a new method called moments analysis using the Gram-Charlier expansion, which allows for better description of non-Gaussian polymer conformations by focusing on cumulants derived from segment density distribution functions.
  • This approach enables researchers to "fingerprint" the unique conformation distributions of polymers at both equilibrium and non-equilibrium states, potentially improving the understanding of nonideal polymer behaviors and their properties.
View Article and Find Full Text PDF

The superior antifouling performance of zwitterionic materials is commonly linked to their hydration structure, in which tight surface binding of water molecules inhibits solute adsorption. However, there is comparatively little direct experimental data on the hydration water structure and dynamics around zwitterionic moieties, including the longer-range behavior of the hydration shell that modulates the approach of solutes to the polymer surface. This work experimentally probes the dynamics of the diffusing hydration water molecules around a series of zwitterion chemistries using Overhauser dynamic nuclear polarization relaxometry.

View Article and Find Full Text PDF

We use sequence-specific polypeptoids to characterize the impact of the monomer sequence on the adsorption of surface-active polymers at fluid/fluid interfaces. Sets of 36 repeat unit polypeptoids with identical chemical composition, but different sequences of hydrophobic moieties along the oligomer chain (taper, inverse taper, blocky, and evenly distributed), are designed and characterized at air/water interfaces. Polypeptoids are driven to the interfaces by decreasing the solvent quality of the aqueous solution.

View Article and Find Full Text PDF

Water structure and dynamics can be key modulators of adsorption, separations, and reactions at soft material interfaces, but systematically tuning water environments in an aqueous, accessible, and functionalizable material platform has been elusive. This work leverages variations in excluded volume to control and measure water diffusivity as a function of position within polymeric micelles using Overhauser dynamic nuclear polarization spectroscopy. Specifically, a versatile materials platform consisting of sequence-defined polypeptoids simultaneously offers a route to controlling the functional group position and a unique opportunity to generate a water diffusivity gradient extending away from the polymer micelle core.

View Article and Find Full Text PDF

We use molecular dynamics simulations to investigate the effect of polypeptoid sequence on the structure and dynamics of its hydration waters. Polypeptoids provide an excellent platform to study small-molecule hydration in disordered polymers, as they can be precisely synthesized with a variety of sidechain chemistries. We examine water behavior near a set of peptoid oligomers in which the number and placement of nonpolar versus polar sidechains are systematically varied.

View Article and Find Full Text PDF

Polymers are commonly used in applications that require long-term exposure to water and aqueous mixtures, serving as water purification membranes, marine antifouling coatings, and medical implants, among many other applications. Because polymer surfaces restructure in response to the surrounding environment, characterization is crucial for providing an accurate understanding of the surface chemistry under conditions of use. To investigate the effects of surface-active side chains on polymer surface chemistry and resultant interactions with interfacial water (i.

View Article and Find Full Text PDF

Polymers with precisely defined monomeric sequences present an exquisite tool for controlling material properties by harnessing both the robustness of synthetic polymers and the ability to tailor the inter- and intramolecular interactions so crucial to many biological materials. While polymer scientists traditionally synthesized and studied the physics of long molecules best described by their statistical nature, many biological polymers derive their highly tailored functions from precisely controlled sequences. Therefore, significant effort has been applied toward developing new methods of synthesizing, characterizing, and understanding the physics of non-natural sequence-defined polymers.

View Article and Find Full Text PDF