Publications by authors named "Audie K Thompson"

Drug delivery systems (DDS) have evolved in the last decades with the development of hydrogels and particles. However, challenges such as high systemic uptake, side effects, low bioavailability, and encapsulation efficiency continue to be significant hurdles faced by such DDSs. Particles and hydrogels can be specifically designed for targeted DDSs to mitigate some of these problems.

View Article and Find Full Text PDF

Polymeric membrane fouling is a long-standing challenge for water filtration. Metal/metal oxide nanoparticle functionalization of the membrane surface can impart anti-fouling properties through the reactivity of the metal species and the generation of radical species. Copper oxide nanoparticles (CuO NPs) are effective at reducing organic fouling when used in conjunction with hydrogen peroxide, but leaching of copper ions from the membrane has been observed, which can hinder the longevity of the CuO NP activity at the membrane surface.

View Article and Find Full Text PDF

Microcystin-LR (MC-LR) is a toxin produced by cyanobacteria that can bloom in freshwater supplies. This study describes a new strategy for remediation of MC-LR that combines linearization of the toxin using microcystinase A, MlrA, enzyme with rejection of linearized byproducts using membrane filtration. The MlrA enzyme was expressed in () and purified via a His-tag with 95% purity.

View Article and Find Full Text PDF

Developing technologies for the reduction of biofouling and enhancement of membrane functionality and durability are challenging but critical for the advancement of water purification processes. Silver (Ag) is often used in the process of purification due to its anti-fouling properties; however, the leaching of this metal from a filtration membrane significantly reduces its effectiveness. Our study was designed to integrate the positive characteristics of poly vinyl alcohol (PVA) with the controlled incorporation of nano-scale silver ions across the membrane.

View Article and Find Full Text PDF

The α proteobacter Rhodobacter sphaeroides accumulates two cytochrome c oxidases (CcO) in its cytoplasmic membrane during aerobic growth: a mitochondrial-like aa(3)-type CcO containing a di-copper Cu(A) center and mono-copper Cu(B), plus a cbb(3)-type CcO that contains Cu(B) but lacks Cu(A). Three copper chaperones are located in the periplasm of R. sphaeroides, PCu(A)C, PrrC (Sco) and Cox11.

View Article and Find Full Text PDF

The Cu(I) chaperone Cox11 is required for the insertion of Cu(B) into cytochrome c oxidase (CcO) of mitochondria and many bacteria, including Rhodobacter sphaeroides. Exploration of the copper binding stoichiometry of R. sphaeroides Cox11 led to the finding that an apparent tetramer of both mitochondrial and bacterial Cox11 binds more copper than the sum of the dimers, providing another example of the flexibility of copper binding by Cu(I)-S clusters.

View Article and Find Full Text PDF