Background: While people with type 2 diabetes (T2D) are more susceptible to infections, studies potentially underestimate the true burden of infection-related mortality since they rely on clinical coding systems primarily structured by body system, and by only focusing on underlying cause. This study examined cause-specific mortality in people with T2D compared to the general population during 2015-2019, focusing on infections.
Methods: 509,403 people aged 41-90 years with T2D alive on 1/1/2015 in Clinical Practice Research Datalink were matched to 976,431 without diabetes on age, sex, and ethnicity.
Purpose: Infection with HIV remains a global health challenge, with >36.9 million individuals living with HIV in 2017. Despite efforts to increase HIV testing and treatment, traditional services have not effectively reached marginalized communities.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
September 2024
Ischemia-reperfusion injury (IRI) is an intrinsic risk associated with liver transplantation. Ex vivo hepatic machine perfusion (MP) is an emerging organ preservation technique that can mitigate IRI, especially in livers subjected to prolonged warm ischemia time (WIT). However, a method to quantify the biological response to WIT during MP has not been established.
View Article and Find Full Text PDFAdult rats exposed to hyperoxia (>95% O) die from respiratory failure in 60-72 h. However, rats preconditioned with >95% O for 48 h followed by 24 h in room air acquire tolerance of hyperoxia (H-T), whereas rats preconditioned with 60% O for 7 days become more susceptible (H-S). Our objective was to evaluate lung tissue mitochondrial bioenergetics in H-T and H-S rats.
View Article and Find Full Text PDFSummary: Molecular mechanisms of biological functions and disease processes are exceptionally complex, and our ability to interrogate and understand relationships is becoming increasingly dependent on the use of computational modeling. We have developed "BioModME," a standalone R-based web application package, providing an intuitive and comprehensive graphical user interface to help investigators build, solve, visualize, and analyze computational models of complex biological systems. Some important features of the application package include multi-region system modeling, custom reaction rate laws and equations, unit conversion, model parameter estimation utilizing experimental data, and import and export of model information in the Systems Biology Matkup Language format.
View Article and Find Full Text PDFDuring liver transplantation, ischemia-reperfusion injury (IRI) is inevitable and decreases the overall success of the surgery. While guidelines exist, there is no reliable way to quantitatively assess the degree of IRI present in the liver. Our recent study has shown a correlation between the bile-to-plasma ratio of FDA-approved sodium fluorescein (SF) and the degree of hepatic IRI, presumably due to IRI-induced decrease in the activity of the hepatic multidrug resistance-associated protein 2 (MRP2); however, the contribution of SF blood clearance via the bile is still convoluted with other factors, such as renal clearance.
View Article and Find Full Text PDFIntegrated computational modeling provides a mechanistic and quantitative framework to characterize alterations in mitochondrial respiration and bioenergetics in response to different metabolic substrates . These alterations play critical roles in the pathogenesis of diseases affecting metabolically active organs such as heart and kidney. Therefore, the present study aimed to develop and validate thermodynamically constrained integrated computational models of mitochondrial respiration and bioenergetics in the heart and kidney cortex and outer medulla (OM).
View Article and Find Full Text PDFCoarctation of the aorta (CoA; constriction of the proximal descending thoracic aorta) is among the most common congenital cardiovascular defects. Coarctation-induced mechanical perturbations trigger a cycle of mechano-transduction events leading to irreversible precursors of hypertension including arterial thickening, stiffening, and vasoactive dysfunction in proximal conduit arteries. This study sought to identify kinetics of the stress-mediated compensatory response leading to these alterations using a preclinical rabbit model of CoA.
View Article and Find Full Text PDFMitochondria are major sources of reactive oxygen species (ROS), which play important roles in both physiological and pathological processes. However, the specific contributions of different ROS production and scavenging components in the mitochondria of metabolically active tissues such as heart and kidney cortex and outer medulla (OM) are not well understood. Therefore, the goal of this study was to determine contributions of different ROS production and scavenging components and provide detailed comparisons of mitochondrial respiration, bioenergetics, ROS emission between the heart and kidney cortex and OM using tissues obtained from the same Sprague-Dawley rat under identical conditions and perturbations.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
October 2022
Tc-hexamethylpropyleneamine oxime (HMPAO) and Tc-duramycin in vivo imaging detects pulmonary oxidative stress and cell death, respectively, in rats exposed to >95% O (hyperoxia) as a model of acute respiratory distress syndrome (ARDS). Preexposure to hyperoxia for 48 h followed by 24 h in room air (H-T) is protective against hyperoxia-induced lung injury. This study's objective was to determine the ability of Tc-HMPAO and Tc-duramycin to track this protection and to elucidate underlying mechanisms.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
August 2022
Quantitative measurement of the degree of hepatic ischemia-reperfusion injury (IRI) is crucial for developing therapeutic strategies for its treatment. We hypothesized that clearance of fluorescent dye through bile metabolism may reflect the degree of hepatic IRI. In this study, we investigated sodium fluorescein clearance kinetics in blood and bile for quantifying the degree of hepatic IRI.
View Article and Find Full Text PDFMitochondrial dehydrogenases are differentially stimulated by Ca. Ca has also diverse regulatory effects on mitochondrial transporters and other enzymes. However, the consequences of these regulatory effects on mitochondrial oxidative phosphorylation (OxPhos) and ATP production, and the dependencies of these consequences on respiratory substrates, have not been investigated between the kidney and heart despite the fact that kidney energy requirements are second only to those of the heart.
View Article and Find Full Text PDFDissipation of mitochondrial membrane potential (Δψ) is a hallmark of mitochondrial dysfunction. Our objective was to use a previously developed experimental-computational approach to estimate tissue Δψ in intact lungs of rats exposed to hyperoxia and to evaluate the ability of duroquinone (DQ) to reverse any hyperoxia-induced depolarization of lung . Rats were exposed to hyperoxia (>95% O) or normoxia (room air) for 48 h, after which lungs were excised and connected to a ventilation-perfusion system.
View Article and Find Full Text PDFBiochim Biophys Acta Bioenerg
February 2022
The kinetics and efficiency of mitochondrial oxidative phosphorylation (OxPhos) can depend on the choice of respiratory substrates. Furthermore, potential differences in this substrate dependency among different tissues are not well-understood. Here, we determined the effects of different substrates on the kinetics and efficiency of OxPhos in isolated mitochondria from the heart and kidney cortex and outer medulla (OM) of Sprague-Dawley rats.
View Article and Find Full Text PDFNuclear factor erythroid 2-related factor (Nrf2) is a redox-sensitive transcription factor that responds to oxidative stress by activating expressions of key antioxidant and cytoprotective enzymes via the Nrf2-antioxidant response element (ARE) signaling pathway. Our objective was to characterize hyperoxia-induced acute lung injury (HALI) in Nrf2 knock-out (KO) rats to elucidate the role of this pathway in HALI. Adult Nrf2 wildtype (WT), and KO rats were exposed to room air (normoxia) or >95% O2 (hyperoxia) for 48 h, after which selected injury and functional endpoints were measured in vivo and ex vivo.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
November 2021
Ventilation with gases containing enhanced fractions of oxygen is the cornerstone of therapy for patients with hypoxia and acute respiratory distress syndrome. Yet, hyperoxia treatment increases free reactive oxygen species (ROS)-induced lung injury, which is reported to disrupt autophagy/mitophagy. Altered extranuclear activity of the catalytic subunit of telomerase, telomerase reverse transcriptase (TERT), plays a protective role in ROS injury and autophagy in the systemic and coronary endothelium.
View Article and Find Full Text PDFJ Long Term Eff Med Implants
October 2021
Functional impairment affecting the quality of life results when a wide range of both muscular and joint pathologies affect the temporomandibular joint (TMJ). There are several total temporomandibular joint prosthesis systems available for total joint replacement (TJR). This systematic review provides an overview of the different TJR systems available and discusses their outcomes and efficiency.
View Article and Find Full Text PDFTo develop a dynamic in vivo near-infrared (NIR) fluorescence imaging assay to quantify sequential changes in lung vascular permeability-surface area product (PS) in rodents. Dynamic NIR imaging methods for determining lung vascular permeability-surface area product were developed and tested on non-irradiated and 13 Gy irradiated rats with/without treatment with lisinopril, a radiation mitigator. A physiologically-based pharmacokinetic (PBPK) model of indocyanine green (ICG) pulmonary disposition was applied to in vivo imaging data and PS was estimated.
View Article and Find Full Text PDFReactive oxygen species (ROS) play a crucial role in many physiological processes. However, ROS overproduction leads to oxidative stress, which plays a critical role in cell injury/death and the pathogenesis of many diseases. Members of NADPH oxidase (NOX) family, most of which are comprised of membrane and cytosolic components, are known to be the major nonmitochondrial sources of ROS in many cells.
View Article and Find Full Text PDFThe imaging report is a summary document of findings and the primary form of communication of such to referring clinicians. Expressing uncertainty in the summary report is clearly difficult and the literature is unanimous that there is no agreement between imaging consultants and clinicians, and even between imaging consultants themselves, as to the meaning of uncertainty phrases. It is important for the imaging consultants to express uncertainty in the imaging report, but it is equally important that the referring clinician understands the degree of that uncertainty.
View Article and Find Full Text PDFMitochondrial membrane potential (Δψ) plays a key role in vital mitochondrial functions, and its dissipation is a hallmark of mitochondrial dysfunction. The objective of this study was to develop an experimental and computational approach for estimating Δψ in intact rat lungs using the lipophilic fluorescent cationic dye rhodamine 6G (R6G). Rat lungs were excised and connected to a ventilation-perfusion system.
View Article and Find Full Text PDFWe present a new size-modified Poisson-Boltzmann ion channel (SMPBIC) model and use it to calculate the electrostatic potential, ionic concentrations, and electrostatic solvation free energy for a voltage-dependent anion channel (VDAC) on a biological membrane in a solution mixture of multiple ionic species. In particular, the new SMPBIC model adopts a membrane surface charge density and a natural Neumann boundary condition to reflect the charge effect of the membrane on the electrostatics of VDAC. To avoid the singularity difficulties caused by the atomic charges of VDAC, the new SMPBIC model is split into three submodels such that the solution of one of the submodels is obtained analytically and contains all the singularity points of the SMPBIC model.
View Article and Find Full Text PDFLung uptake of technetium-labeled hexamethylpropyleneamine oxime (HMPAO) increases in rat models of human acute lung injury, consistent with increases in lung tissue glutathione (GSH). Since Tc-HMPAO uptake is the net result of multiple cellular and vascular processes, the objective was to develop an approach to investigate the pharmacokinetics of Tc-HMPAO uptake in isolated perfused rat lungs. Lungs of anesthetized rats were excised and connected to a ventilation-perfusion system.
View Article and Find Full Text PDFAltered lung tissue bioenergetics plays a key role in the pathogenesis of lung diseases. A wealth of information exists regarding the bioenergetic processes in mitochondria isolated from rat lungs, cultured pulmonary endothelial cells, and intact rat lungs under physiological and pathophysiological conditions. However, the interdependence of those processes makes it difficult to quantify the impact of a change in a single or multiple process(es) on overall lung tissue bioenergetics.
View Article and Find Full Text PDFReactive oxygen species (ROS) play an important role in cell signaling, growth, and immunity. However, when produced in excess, they are toxic to the cell and lead to premature aging and a myriad of pathologies, including cardiovascular and renal diseases. A major source of ROS in many cells is the family of NADPH oxidase (NOX), comprising of membrane and cytosolic components.
View Article and Find Full Text PDF