Publications by authors named "Auden Cote-L'Heureux"

In contrast to the typified view of genome cycling only between haploidy and diploidy, there is evidence from across the tree of life of genome dynamics that alter both copy number (i.e. ploidy) and chromosome complements.

View Article and Find Full Text PDF

The bulk of eukaryotic diversity is microbial, with macroscopic lineages such as plant, animals and fungi nesting among a plethora of diverse lineages that include amoebae, flagellates, ciliates, and many types of algae. Our understanding of the evolutionary relationships and genome properties of microbial eukaryotes is rapidly advancing through analyses of omics (transcriptomic, genomic) data. However, phylogenomic analyses are challenging for microeukaryotes, and particularly uncultivable lineages, as single-cell approaches generate a mixture of sequence data from hosts, associated microbiomes, and contaminants.

View Article and Find Full Text PDF

Ciliates are single-celled microbial eukaryotes that diverged from other eukaryotic lineages over a billion years ago. The extensive evolutionary timespan of ciliate has led to enormous genetic and phenotypic changes, contributing significantly to their high level of diversity. Recent analyses based on molecular data have revealed numerous cases of cryptic species complexes in different ciliate lineages, demonstrating the need for a robust approach to delimit species boundaries and elucidate phylogenetic relationships.

View Article and Find Full Text PDF

The evolution of lineage-specific gene families remains poorly studied across the eukaryotic tree of life, with most analyses focusing on the recent evolution of de novo genes in model species. Here we explore the origins of lineage-specific genes in ciliates, a ~1 billion year old clade of microeukaryotes that are defined by their division of somatic and germline functions into distinct nuclei. Previous analyses on conserved gene families have shown the effect of ciliates' unusual genome architecture on gene family evolution: extensive genome processing-the generation of thousands of gene-sized somatic chromosomes from canonical germline chromosomes-is associated with larger and more diverse gene families.

View Article and Find Full Text PDF

The resilience of the mitochondrial genome (mtDNA) to a high mutational pressure depends, in part, on negative purifying selection in the germline. A paradigm in the field has been that such selection, at least in part, takes place in primordial germ cells (PGCs). Specifically, Floros et al.

View Article and Find Full Text PDF

The enormous population sizes and wide biogeographical distribution of many microbial eukaryotes set the expectation of high levels of intraspecific genetic variation. However, studies investigating protist populations remain scarce, mostly due to limited 'omics data. Instead, most genetics studies of microeukaryotes have thus far relied on single loci, which can be misleading and do not easily allow for detection of recombination, a hallmark of sexual reproduction.

View Article and Find Full Text PDF

A large-scale study of mutations in mitochondrial DNA has revealed a subset that do not accumulate with age.

View Article and Find Full Text PDF

The A-to-G point mutation at position 3243 in the human mitochondrial genome (m.3243A > G) is the most common pathogenic mtDNA variant responsible for disease in humans. It is widely accepted that m.

View Article and Find Full Text PDF

Vertical inheritance is foundational to Darwinian evolution, but fails to explain major innovations such as the rapid spread of antibiotic resistance among bacteria and the origin of photosynthesis in eukaryotes. While lateral gene transfer (LGT) is recognized as an evolutionary force in prokaryotes, the role of LGT in eukaryotic evolution is less clear. With the exception of the transfer of genes from organelles to the nucleus, a process termed endosymbiotic gene transfer (EGT), the extent of interdomain transfer from prokaryotes to eukaryotes is highly debated.

View Article and Find Full Text PDF