The biology of hyaluronidase activity on age related turnover of the hyaluronic acid (HA) in skin dermis and epidermis has not been established. Elucidation of this phenomenon enables discovery of novel compounds for skin health. As a simple and green technique, capillary electrophoresis (CE) was used for the first time for the determination of the kinetic constants (K V and IC) of the enzymatic degradation of HA.
View Article and Find Full Text PDFAn efficient, stereocontrolled, and highly divergent approach for the preparation of oligomers of chondroitin sulfate (CS) A, C, D, E, K, L, and M variants, starting from a single precursor easily obtained by semisynthesis from abundant natural polymer is reported for the first time. Common intermediates were designed that allowed the straightforward construction of O-sulfonated species either on the D-galactosamine unit (CS-A, -C, and -E) or on both D-glucuronic acid and D-galactosamine units (CS-D and CS-K, -L, and -M). This strategy represents a successful improvement and brings a definitive answer toward the synthesis of such complex molecules with numerous relevant biological functions.
View Article and Find Full Text PDFControlled acid hydrolysis of polymeric chondroitin sulfate of bovine origin afforded in good yield a basic disaccharide fragment that was used for the first time as a starting material for the expeditious preparation of a set of building blocks that in turn act as versatile synthons for the efficient and stereocontrolled construction of a collection of size-defined chondroitin oligomers (from di- to octasaccharides). This step economy process allows their preparation as reducing species, fitted with a fluorophore, or as biotinylated conjugates; all useful tools for the preparation of microarrays, or as probes for the study of the biosynthesis of chondroitin sulfate.
View Article and Find Full Text PDF