The potent antitumor antibiotic pactamycin is an aminocyclopentitol-containing natural product produced by the soil bacterium Streptomyces pactum. Recent studies showed that the aminocyclopentitol unit is derived from N-acetyl-D-glucosamine, which is attached to an acyl carrier protein (ACP)-bound polyketide by a glycosyltransferase enzyme, PtmJ. Here, we report a series of post-glycosylation modifications of the sugar moiety of the glycosylated polyketide while it is still attached to the carrier protein.
View Article and Find Full Text PDFGlycosylation is a common modification reaction in natural product biosynthesis and has been known to be a post-assembly line tailoring process in glycosylated polyketide biosynthesis. Here, we show that in pactamycin biosynthesis, glycosylation can take place on an acyl carrier protein (ACP)-bound polyketide intermediate. Using in vivo gene inactivation, chemical complementation and in vitro pathway reconstitution, we demonstrate that the 3-aminoacetophenone moiety of pactamycin is derived from 3-aminobenzoic acid by a set of discrete polyketide synthase proteins via a 3-(3-aminophenyl)3-oxopropionyl-ACP intermediate.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
June 2019
The antitumor antibiotic pactamycin is a highly substituted aminocyclopentitol-derived secondary metabolite produced by the soil bacterium Streptomyces pactum. It has exhibited potent antibacterial, antitumor, antiviral, and antiprotozoal activities. Despite its outstanding biological activities, the complex chemical structure and broad-spectrum toxicity have hampered its development as a therapeutic, limiting its contribution to biomedical science to a role as a molecular probe for ribosomal function.
View Article and Find Full Text PDF