Publications by authors named "Aubry I"

The RNA-binding protein HuR regulates various cellular processes, such as proliferation, differentiation, and cell fate. Moreover, recent studies have shown that HuR modulates the expression of factors important for tumor growth and progression. Despite its prominent role in tumorigenesis, until recently, there have been no reported mutations in HuR that have been associated to cancer.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is a lethal disease caused by mutations in the gene that encodes dystrophin. Dystrophin deficiency also impacts muscle stem cells (MuSCs), resulting in impaired asymmetric stem cell division and myogenic commitment. Using MuSCs from DMD patients and the DMD mouse model , we found that PTPN1 phosphatase expression is up-regulated and STAT3 phosphorylation is concomitantly down-regulated in DMD MuSCs.

View Article and Find Full Text PDF

We examined the role of protein tyrosine phosphatase receptor sigma (PTPRS) in the context of Alzheimer's disease and synaptic integrity. Publicly available datasets (BRAINEAC, ROSMAP, ADC1) and a cohort of asymptomatic but "at risk" individuals (PREVENT-AD) were used to explore the relationship between PTPRS and various Alzheimer's disease biomarkers. We identified that PTPRS rs10415488 variant C shows features of neuroprotection against early Tau pathology and synaptic degeneration in Alzheimer's disease.

View Article and Find Full Text PDF

We examined the role of protein tyrosine phosphatase receptor sigma (PTPRS) in the context of Alzheimer's disease and synaptic integrity. Publicly available datasets (BRAINEAC, ROSMAP, ADC1) and a cohort of asymptomatic but "at risk" individuals (PREVENT-AD) were used to explore the relationship between PTPRS and various Alzheimer's disease biomarkers. We identified that PTPRS rs10415488 variant C shows features of neuroprotection against early tau pathology and synaptic degeneration in Alzheimer's disease.

View Article and Find Full Text PDF

Thousand-and-one-amino acid kinase 3 (TAOK3) is a serine and threonine kinase that belongs to the STE-20 family of kinases. Its absence reduces T cell receptor (TCR) signaling and increases the interaction of the tyrosine phosphatase SHP-1, a major negative regulator of proximal TCR signaling, with the kinase LCK, a component of the core TCR signaling complex. Here, we used mouse models and human cell lines to investigate the mechanism by which TAOK3 limits the interaction of SHP-1 with LCK.

View Article and Find Full Text PDF

Phosphatases of regenerating liver (PRL-1, PRL-2, PRL-3; also known as PTP4A1, PTP4A2, PTP4A3, respectively) control intracellular magnesium levels by interacting with the CNNM magnesium transport regulators. Still, the exact mechanism governing magnesium transport by this protein complex is not well understood. Herein, we have developed a genetically encoded intracellular magnesium-specific reporter and demonstrate that the CNNM family inhibits the function of the TRPM7 magnesium channel.

View Article and Find Full Text PDF

Communication between gut microbiota and the brain is an enigma. Alterations in the gut microbial community affects enteric metabolite levels, such as short chain fatty acids (SCFAs). SCFAs have been proposed as a possible mechanism through which the gut microbiome modulate brain health and function.

View Article and Find Full Text PDF

Metabolic reprogramming occurs in cancer cells and is regulated partly by the opposing actions of tyrosine kinases and tyrosine phosphatases. Several members of the protein tyrosine phosphatase (PTP) superfamily have been linked to cancer as either pro-oncogenic or tumor-suppressive enzymes. In order to investigate which PTPs can modulate the metabolic state of cancer cells, we performed an shRNA screen of PTPs in HCT116 human colorectal cancer cells.

View Article and Find Full Text PDF

Objective: To evaluate 12-month outcomes in treatment-naïve patients with neovascular (wet) age-related macular degeneration (AMD) stratified by intravitreal aflibercept (IVT-AFL) regimen.

Methods And Analysis: Patients included in the 12-month interim analysis of Real life of intravitreal Aflibercept In FraNce: oBservatiOnal Study in Wet AMD (RAINBOW), a 4-year, ongoing observational study conducted in France, were stratified by IVT-AFL dosing regimen. Safety (n=593) and effectiveness (n=428) data were analysed.

View Article and Find Full Text PDF

Background/aims: To monitor treatment-naïve patients with wet age-related macular degeneration (wet AMD) receiving intravitreal aflibercept (IVT-AFL) in France.

Methods: RAINBOW Real life use of intravitreal Aflibercept In FraNce - oBservatiOnal study in Wet age-related macular degeneration) is an ongoing, observational, retrospective and prospective 4-year study to assess visual (primary), anatomical and safety outcomes following IVT-AFL treatment in wet AMD patients. We report the interim 12-month outcomes in patients who have already been enrolled.

View Article and Find Full Text PDF

Genetic variants at the PTPN2 locus, which encodes the tyrosine phosphatase PTPN2, cause reduced gene expression and are linked to rheumatoid arthritis (RA) and other autoimmune diseases. PTPN2 inhibits signaling through the T cell and cytokine receptors, and loss of PTPN2 promotes T cell expansion and CD4- and CD8-driven autoimmunity. However, it remains unknown whether loss of PTPN2 in FoxP3+ regulatory T cells (Tregs) plays a role in autoimmunity.

View Article and Find Full Text PDF

Receptor tyrosine phosphatase sigma (RPTPσ) plays an important role in the regulation of axonal outgrowth and neural regeneration. Recent studies have identified two RPTPσ ligands, chondroitin sulfate proteoglycans (CSPGs) and heparan sulfate proteoglycans (HSPG), which can modulate RPTPσ activity by affecting its dimerization status. Here, we developed a split luciferase assay to monitor RPTPσ dimerization in living cells.

View Article and Find Full Text PDF

T-cell protein tyrosine phosphatase (TC-PTP) has a critical role in the development of the immune system and has been identified as a negative regulator of inflammation. Single-nucleotide polymorphisms in the TC-PTP locus have been associated with increased susceptibility to inflammatory bowel diseases (IBDs) in patients. To further understand how TC-PTP is related to IBDs, we investigated the role of TC-PTP in maintaining the intestinal epithelial barrier using an in vivo genetic approach.

View Article and Find Full Text PDF

Diet affects the risk and progression of prostate cancer, but the interplay between diet and genetic alterations in this disease is not understood. Here we present genetic evidence in the mouse showing that prostate cancer progression driven by loss of the tumor suppressor Pten is mainly unresponsive to a high-fat diet (HFD), but that coordinate loss of the protein tyrosine phosphatase Ptpn1 (encoding PTP1B) enables a highly invasive disease. Prostate cancer in Pten(-/-)Ptpn1(-/-) mice was characterized by increased cell proliferation and Akt activation, interpreted to reflect a heightened sensitivity to IGF-1 stimulation upon HFD feeding.

View Article and Find Full Text PDF

PTP1B is a master regulator in the insulin and leptin metabolic pathways. Hyper-activated PTP1B results in insulin resistance and is viewed as a key factor in the onset of type II diabetes and obesity. Moreover, inhibition of PTP1B expression in cancer cells dramatically inhibits cell growth in vitro and in vivo.

View Article and Find Full Text PDF

Calnexin is a type I integral endoplasmic reticulum (ER) membrane protein, molecular chaperone, and a component of the translocon. We discovered a novel interaction between the calnexin cytoplasmic domain and UBC9, a SUMOylation E2 ligase, which modified the calnexin cytoplasmic domain by the addition of SUMO. We demonstrated that calnexin interaction with the SUMOylation machinery modulates an interaction with protein tyrosine phosphatase 1B (PTP1B), an ER-associated protein tyrosine phosphatase involved in the negative regulation of insulin and leptin signaling.

View Article and Find Full Text PDF

CD45 is a receptor-like member of the protein tyrosine phosphatase (PTP) family. We screened in silico for small molecules binding at a predicted allosteric pocket unique to the CD45 intracellular domain, and validated inhibitors by in vitro phosphatase assays. Compound 211 exhibited a CD45 IC50 value of 200 nM and had >100-fold selectivity over six related PTPs.

View Article and Find Full Text PDF

SELEX was used to create an RNA aptamer targeted to protein tyrosine phosphatase 1B (PTP1B), an enzyme implicated in type 2 diabetes, breast cancer and obesity. We found an aptamer that strongly inhibits PTP1B in vitro with a Ki of less than 600 pM. This slow-binding, high-affinity inhibitor is also highly selective, with no detectable effect on most other tested phosphatases and approximately 300:1 selectivity over the closely related TC-PTP.

View Article and Find Full Text PDF

Objective: Bone tissue in osteoarthritis (OA) is composed of abundant undermineralized osteoid matrix. The aim of this study was to investigate the mechanisms responsible for this abnormal matrix, using in vitro OA subchondral osteoblasts.

Methods: Primary normal and OA osteoblasts were prepared from tibial plateaus.

View Article and Find Full Text PDF

Novel lipidyl pseudopteranoids, lipidyl pseudopteranes A-F (1-6), have been isolated from the soft coral Pseudopterogorgia acerosa collected from the Bahamas. Structure elucidation of the six new compounds was based on 1D and 2D NMR data and mass spectrometry, and a biomimetic synthesis of 1 from pseudopterolide (7) was used to help establish its absolute configuration. These structures represent the first report of a pseudopterane diterpene with a fatty acid moiety.

View Article and Find Full Text PDF

As important regulators of cellular signal transduction, members of the protein tyrosine phosphatase (PTP) family are considered to be promising drug targets. However, to date, the most effective in vitro PTP inhibitors have tended to be highly charged, thus limiting cellular permeability. Here, we have identified an uncharged thioxothiazolidinone derivative (compound 1), as a competitive inhibitor of a subset of PTPs.

View Article and Find Full Text PDF

Insulin-like growth factor (IGF)-1 is a key factor in bone homeostasis and could be involved in bone tissue sclerosis as observed in osteoarthritis (OA). Here, we compare the key signaling pathways triggered in response to IGF-1 stimulation between normal and OA osteoblasts (Obs). Primary Obs were prepared from the subchondral bone of tibial plateaus of OA patients undergoing knee replacement or from normal individuals at autopsy.

View Article and Find Full Text PDF

Transscleral contact cyclophotocoagulation with ND YAG Laser continuous mode permits the induction of a focused ciliary process with a secretory surface decrease. This treatment has been used for the treatment of refractory glaucoma since 1987. We report the treatment by transscleral cyclophotocoagulation of 49 patients with terminal glaucoma.

View Article and Find Full Text PDF

This work is based on the microscopic study of 30 trochlear nerve trunks (15 heads). In 17 cases, the trunk arose from two nerve bundles, in 8 cases from one bundle, and for the other 5 nerves, three or four bundles. The mean total length of the trochlear nerve was 86 mm.

View Article and Find Full Text PDF