Publications by authors named "Aubrey Swain"

Hexachloro-1:3-butadiene (HCBD) causes segment-specific injury to the proximal renal tubule. A time course study of traditional and more recently proposed urinary biomarkers was performed in male Hanover Wistar rats receiving a single intraperitoneal (ip) injection of 45 mg/kg HCBD. Animals were killed on days 1, 2, 3, 4, 5, 6, 7, 10, 14, and 28 postdosing and the temporal response of renal biomarkers was characterized using kidney histopathology, urinary and serum biochemistry, and gene expression.

View Article and Find Full Text PDF

Hexachloro-1:3-butadiene (HCBD) causes damage specifically to the renal proximal tubule in rats. In the present study, injury to the nephron of male Hanover Wistar rats was characterized at 24 h following dosing with HCBD in the range 5-90 mg kg⁻¹ to determine the most sensitive biomarkers of damage, that is, the biomarkers demonstrating significant changes at the lowest dose of HCBD, using a range of measurements in serum and urine, renal histopathology, and renal and hepatic gene expression. Histologically, kidney degeneration was noted at doses as low as 10 mg kg⁻¹ HCBD.

View Article and Find Full Text PDF

Hexachloro-1:3-butadiene (HCBD) causes kidney injury specific to the pars recta of the proximal tubule. In the present studies, injury to the nephron was characterized at 24 h following a single dose of HCBD, using a range of quantitative urinary measurements, renal histopathology and gene expression. Multiplexed renal biomarker measurements were performed using both the Meso Scale Discovery (MSD) and Rules Based Medicine platforms.

View Article and Find Full Text PDF

Amiodarone was given to male Sprague-Dawley rats at a dose of 150 mg kg(-1) day(-1) for 7 consecutive days to induce phospholipidosis in the lungs of treated rats. Amiodarone was given alone or concurrently with phenobarbitone. Animals given amiodarone had raised total phospholipid in serum, lung and lymphocytes, and elevated lyso(bis)phosphatidic acid (LBPA) in all tissues.

View Article and Find Full Text PDF