Frontotemporal lobar degeneration with motor neuron disease (FTLD-MND) is characterized by neuronal cytoplasmic inclusions containing TDP-43. Apolipoprotein E4 (apoE4), derived from the apoE ϵ4 allele, enhances brain atrophy in FTLD through unknown mechanisms. Here, we studied two siblings with C9ORF72-linked familial FTLD-MND, an apoE ϵ4 homozygote and an apoE ϵ3 homozygote.
View Article and Find Full Text PDFApolipoprotein (apo) E4 is the major known genetic risk factor for Alzheimer's disease (AD). We have shown in vitro and in vivo that apoE4 preferentially undergoes aberrant cleavage in neurons, yielding neurotoxic C-terminal-truncated fragments. To study the effect of these fragments on amyloid-β (Aβ) clearance/deposition and their potential synergy with Aβ in eliciting neuronal and behavioral deficits, we cross-bred transgenic mice expressing apoE3, apoE4, or apoE4(Δ272-299) with mice expressing human amyloid protein precursor (APP) harboring familial AD mutations (hAPP(FAD)).
View Article and Find Full Text PDFApolipoprotein E4 (apoE4) is the major genetic risk factor for Alzheimer's disease. However, the underlying mechanisms are unclear. We found that female apoE4 knock-in (KI) mice had an age-dependent decrease in hilar GABAergic interneurons that correlated with the extent of learning and memory deficits, as determined in the Morris water maze, in aged mice.
View Article and Find Full Text PDFThe lipid transport protein apolipoprotein E (apoE) is abundantly expressed in the brain. Its main isoforms in humans are apoE2, apoE3, and apoE4. ApoE4 is the major known genetic risk factor for Alzheimer's disease and also contributes to the pathogenesis of various other neurological conditions.
View Article and Find Full Text PDFApolipoprotein (apo) E, a polymorphic protein with three isoforms (apoE2, apoE3, and apoE4), is essential for lipid homeostasis. Carriers of apoE4 are at higher risk for developing Alzheimer's disease. We have investigated adult neurogenesis in mice with knockout (KO) for apoE or with knockin (KI) alleles for human apoE3 or apoE4, and we report that neurogenesis is reduced in both apoE-KO and apoE4-KI mice.
View Article and Find Full Text PDFPlatelets arrest bleeding by adhering to and aggregating on the subendothelium exposed at the site of vessel injury. This process is initiated by the interaction between the subendothelium von Willebrand factor (VWF) and the glycoprotein (GP) Ib-IX-V complex on platelets. However, the same interaction also results in thrombosis at the site of a ruptured atherosclerotic plaque.
View Article and Find Full Text PDFNeuronal expression of apolipoprotein (apo) E4 may contribute to the pathogenesis of Alzheimer's disease (AD). In studying how apoE expression is regulated in neurons, we identified a splicing variant of apoE mRNA with intron-3 retention (apoE-I3). ApoE-I3 mRNA was detected in neuronal cell lines and primary neurons, but not in astrocytic cell lines or primary astrocytes, from humans and mice by reverse transcription (RT)-PCR.
View Article and Find Full Text PDFTo study the profile and regulation of apolipoprotein E (apoE) expression in the CNS, we generated mice in which apoE expression can be detected in vivo with unprecedented sensitivity and resolution. cDNA encoding enhanced green fluorescent protein (EGFP) with a stop codon was inserted by gene targeting into the apoE gene locus (EGFPapoE) immediately after the translation initiation site. Insertion of EGFP into one apoE allele provides a real-time location marker of apoE expression in vivo; the remaining allele is sufficient to maintain normal cellular physiology.
View Article and Find Full Text PDFShiga toxin 1 (Stx-1) and Stx-2 produced by enterohemorrhagic Escherichia coli cause the diarrhea-associated hemolytic uremic syndrome (HUS). This type of HUS is characterized by obstruction of the glomeruli and renal microvasculature by platelet-fibrin thrombi, acute renal failure, thrombocytopenia, microvascular hemolytic anemia, and plasma levels of von Willebrand factor (VWF)-cleaving protease (ADAMTS13) activity that are within a broad normal range. We investigated the mechanism of initial platelet accumulation on Stx-stimulated endothelial cells.
View Article and Find Full Text PDFA disintegrin-like and metalloprotease with thrombospondin type 1-motif 13 (ADAMTS-13) cleaves the A2 domain of von Willebrand factor (VWF), converting the ultralarge (UL) and hyperactive VWF multimers freshly released from endothelial cells to smaller and less active forms found in plasma. Recombinant ADAMTS-13 lacking the C-terminal region is active under static conditions, but its functions under flow conditions have not been determined. Here, we show that VWF-cleaving activity measured under flow was preserved in an ADAMTS-13 mutant lacking the second to eighth thrombospondin-1 motifs and the complement components C1r/C1s, Uegf sea urchin fibropellins, and bone morphogenic protein 1 (CUB) domains, but was severely deficient in a mutant that was further truncated to remove the spacer domain.
View Article and Find Full Text PDFADAMTS13 cleaves ultralarge and hyperreactive von Willebrand factor (ULVWF) freshly released from activated endothelial cells to smaller and less active forms. This process may be affected by the amount of ULVWF released and the processing capacity of ADAMTS13, contributing to the development of thrombotic diseases. We examined the effects of inflammatory cytokines on the release and cleavage of ULVWF to evaluate potential links between inflammation and thrombosis.
View Article and Find Full Text PDFvon Willebrand factor (VWF) released from endothelium is ultralarge (UL) and hyperreactive. If released directly into plasma, it can spontaneously aggregate platelets, resulting in systemic thrombosis. This disastrous consequence is prevented by the ADAMTS13 (ADisintegrin and Metalloprotease with ThromboSpondin motif) cleavage of ULVWF into smaller, less active forms.
View Article and Find Full Text PDFThrombotic thrombocytopenic purpura is caused by congenital or acquired deficiency of ADAMTS-13, a metalloprotease that cleaves the endothelium-derived ultra-large multimers of von Willebrand factor (ULVWF). The proteolysis converts hyper-reactive and thrombogenic ULVWF into smaller and less adhesive plasma forms. Activity of ADAMTS-13 is usually measured in a static system under non-physiological conditions that require protein denaturation and prolonged incubation.
View Article and Find Full Text PDFAdhesion of platelets to the exposed extracellular matrix proteins at sites of vascular injury is partly regulated by the local fluid shear stress. Because the Leu33Pro (Pl(A)) polymorphism of integrin beta(3) confers only a modest increase in adhesion under static conditions, we used CHO and 293 cells expressing the Leu33 or Pro33 isoform of beta(3) in flow chamber experiments to test whether shear forces would alter the Pl(A) adhesive phenotype. We found that shear force augmented the Pro33-mediated enhanced adhesion to fibrinogen.
View Article and Find Full Text PDFThrombotic thrombocytopenic purpura (TTP) is a devastating thrombotic disorder caused by widespread microvascular thrombi composed of platelets and von Willebrand factor (VWF). The disorder is associated with a deficiency of the VWF-cleaving metalloprotease, ADAMTS-13, with consequent accumulation of ultralarge (UL) VWF multimers in the plasma. ULVWF multimers, unlike plasma forms of VWF, attach spontaneously to platelet GP Ibalpha, a component of the GP Ib-IX-V complex.
View Article and Find Full Text PDF