This study investigates whether nanoplastics are significant contributor of rare earth elements (Gd) transportation under environmental conditions. Important effects of nanoplastic concentration, Gd concentration, complexation with organic ligands, pH, ionic strength and occurrence of natural colloids competitor were studied thanks to an experimental design combining incubation follow by ultrafiltration and ICPMS analyses. In particular, we observed that even in sea water, about half of the gadolinium can be adsorbed on nanoplastics.
View Article and Find Full Text PDFSulfidic hot springs harbor unique microbial communities and are important in mercury (Hg) species transformations, although the fine scale drivers of these processes remain poorly understood. Here we studied Hg speciation in water, biofilms, and sediment across three sampling seasons in a French sulfidic hot spring with low Hg concentrations. Microbial Hg species methylation and demethylation potentials were evaluated using incubation experiments with species-specific Hg isotope tracers.
View Article and Find Full Text PDFThe interconnection between biotic and abiotic pathways involving the nitrogen and iron biogeochemical cycles has recently gained interest. While lacustrine ecosystems are considered prone to the biotic nitrate reduction (denitrification), their potential for promoting the abiotic nitrite reduction (chemodenitrification) remains unclear. In the present study, batch incubations were performed to assess the potential for chemodenitrification and denitrification in the saline inland lake Gallocanta.
View Article and Find Full Text PDFThe sulphur cycle has a key role on the fate of nutrients through its several interconnected reactions. Although sulphur cycling in aquatic ecosystems has been thoroughly studied since the early 70's, its characterisation in saline endorheic lakes still deserves further exploration. Gallocanta Lake (NE Spain) is an ephemeral saline inland lake whose main sulphate source is found on the lake bed minerals and leads to dissolved sulphate concentrations higher than those of seawater.
View Article and Find Full Text PDFIron is geologically important and biochemically crucial for all microorganisms, plants and animals due to its redox exchange, the involvement in electron transport and metabolic processes. Despite the abundance of iron in the earth crust, its bioavailability is very limited in nature due to its occurrence as ferrihydrite, goethite, and hematite where they are thermodynamically stable with low dissolution kinetics in neutral or alkaline environments. Organisms such as bacteria, fungi, and plants have evolved iron acquisition mechanisms to increase its bioavailability in such environments, thereby, contributing largely to the iron cycle in the environment.
View Article and Find Full Text PDFHistorically, the production of reactive oxygen species (ROS) in the ocean has been attributed to photochemical and biochemical reactions. However, hydrothermal vents emit globally significant inventories of reduced Fe and S species that should react rapidly with oxygen in bottom water and serve as a heretofore unmeasured source of ROS. Here, we show that the Fe-catalyzed oxidation of reduced sulfur species in hydrothermal vent plumes in the deep oceans supported the abiotic formation of ROS at concentrations 20 to 100 times higher than the average for photoproduced ROS in surface waters.
View Article and Find Full Text PDFAn innovative multiple regression analysis was used to evaluate metal/metalloid contamination in the surface sediments of a coastal lagoon. The concentrations of metals/metalloids were represented as a function of geochemical characteristics of the sediments (fine fraction, concentrations of organic carbon, Ca, Al, Mn) and distances between sampling points. The effect of distances on the concentrations were negligible for Li, Co, Ni, Ba, V, Cr, and only geochemical variables specific for each element explained its spatial variation.
View Article and Find Full Text PDFThis study presents a new gel based technique to describe the pore water ammonium distribution through the sediment-water interface in two dimensions at a millimeter scale. The technique is an adaptation of the classical colorimetric method based on the Berthelot's reaction. After the thin film of the gel probe was equilibrated by diffusion either in standard solutions or in pore waters, a colorimetric reagent gel was set on the gel probe, allowing development of the characteristic green color.
View Article and Find Full Text PDFWe describe the modification of the porphyrin method for low-level determination of the speciation of dissolved Mn in seawater. First, an investigation of sensitivity of the method versus the salinity, the reagent composition and the type of ligands present is described for a few micromolar of dissolved Mn. Then, using certified seawater reference standards, we demonstrate the accuracy of the method for total concentrations of manganese between 1 and 10 nM.
View Article and Find Full Text PDFSiderophores are natural metal chelating agents that strongly control the biogeochemical metal cycles such as Fe in the environment. This article describes a new methodology to detect and quantify at the micromolar concentration the spatial distribution at millimeter scale of siderophores within the root's system. The "universal" CAS assay originally designed for bacterial siderophores detection and later designed for fungus was adapted here for diffusive equilibrium in thin film gel techniques (DET).
View Article and Find Full Text PDFThis study presents a new approach combining diffusive equilibrium in thin-film (DET) and spectrophotometric methods to determine the spatial variability of dissolved iron and dissolved reactive phosphorus (DRP) with a single gel probe. Its originality is (1) to postpone up to three months the colorimetric reaction of DET by freezing and (2) to measure simultaneously dissolved iron and DRP by hyperspectral imaging at a submillimeter resolution. After a few minutes at room temperature, the thawed gel is sandwiched between two monospecific reagent DET gels, leading to magenta and blue coloration for iron and phosphate, respectively.
View Article and Find Full Text PDF